347 research outputs found

    Analysis of Jet-Wing Distributed Propulsion from Thick Wing Trailing Edges

    Get PDF
    Conventional airliners use two to four engines in a Cayley-type arrangement to provide thrust, and the thrust is concentrated right behind the engine. Distributed propulsion is the idea of redistributing the thrust across most, or all, of the wingspan of an aircraft. This can be accomplished by using several large engines and using a duct to spread out the exhaust flow to form a jet-wing or by using many small engines spaced along the span of the wing. Jet-wing distributed propulsion was originally suggested as a way to improve propulsive efficiency. A previous study at Virginia Tech assessed the potential gains in propulsive efficiency. The purpose of this study was to assess the performance benefits of jet-wing distributed propulsion. The Reynolds-averaged, finitevolume, Navier-Stokes code GASP was used to perform parametric computational fluid dynamics (CFD) analyses on two-dimensional jet-wing models. The jet-wing was modeled by applying jet boundary conditions on the trailing edges of blunt trailing edge airfoils such that the vehicle was self-propelled. As this work was part of a Blended-Wing-Body (BWB) distributed propulsion multidisciplinary optimization (MDO) study, two airfoils of different thickness were modeled at BWB cruise conditions as examples. One airfoil, representative of an outboard BWB wing section, was 11% thick. The other airfoil, representative of an inboard BWB wing section, was 18% thick. Furthermore, in an attempt to increase the propulsive efficiency, the trailing edge thickness of the 11% thick airfoil was doubled in size. The studies show that jet-wing distributed propulsion can be used to obtain propulsive efficiencies on the order of turbofan engine aircraft. If the trailing edge thickness is expanded, then jet-wing distributed propulsion can give improved propulsive efficiency. However, expanding the trailing edge must be done with care, as there is a drag penalty

    Asymmetrically substituted 5,5 `-bistriazoles - nitrogen-rich materials with various energetic functionalities

    Get PDF
    In this contribution the synthesis and full structural and spectroscopic characterization of three asymmetrically substituted bis-1,2,4-triazoles, along with different energetic moieties like amino, nitro, nitrimino and azido moieties, is presented. Additionally, selected nitrogen-rich ionic derivatives have been prepared and characterized. This comparative study on the influence of these energetic moieties on structural and energetic properties constitutes a complete characterization including IR, Raman and multinuclear NMR spectroscopy. Single crystal X-ray crystallographic measurements were performed and provide insight into structural characteristics as well as inter-and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS-4M level of theory, revealing highly positive heats of formation for all compounds. The detonation parameters were calculated using the EXPLO5 program and compared to the common secondary explosive RDX as well as recently published symmetric bistriazoles. As expected, the measured sensitivities to mechanical stimuli and decomposition temperatures strongly depend on the energetic moiety of the triazole ring. All compounds were characterized in terms of sensitivities (impact, friction, electrostatic) and thermal stabilities, the ionic derivatives were found to be thermally stable, insensitive compounds

    Turnover of soil monosaccharides: Recycling versus Stabilization

    Get PDF
    Soil organic matter (SOM) represents a mixture of differently degradable compounds. Each of these compounds are characterised by different dynamics due to different chemical recalcitrance, transformation or stabilisation processes in soil. Carbohydrates represent one of these compounds and contribute up to 25 % to the soil organic matter. Vascular plants are the main source of pentose sugars (Arabinose and Xylose), whereas hexoses (Galactose and Mannose) are primarily produced by microorganisms. Several studies suggest that the mean turnover times of the carbon in soil sugars are similar to the turnover dynamics of the bulk carbon in soil. The aim of the study is to characterise the influence of stabilisation and turnover of soil carbohydrates. Soil samples are collected from (i)a continuous maize cropping experiment (“Höhere Landbauschule” Rotthalmünster, Bavaria) established 1979 on a Stagnic Luvisol and (ii) from a continuous wheat cropping, established 1969, as reference site. The effect of stabilisation is estimated by the comparison of turnover times of microbial and plant derived soil carbohydrates. As the dynamics of plant derived carbohydrate are solely influenced by stabilisation processes, whereas the dynamics of microbial derived carbohydrates are affected by recycling of organic carbon compounds derived from C3 plant substrate as well as stabilisation processes. The compound specific isotopic analysis (CSIA) of soil carbohydrates was performed using a HPLC/o/IRMS system. The chromatographic and mass spectrometric subunits were coupled with a LC–Isolink interface. Soil sugars were extracted after mild hydrolysis using 4 M trifluoroacetic acid (TFA)

    Organic Nutrients Induced Coupled C- and P-Cycling Enzyme Activities During Microbial Growth in Forest Soils

    Get PDF
    Besides environmental and soil physical drivers, the functional properties of microbial populations, i. e., growth rate, enzyme production, and maintenance requirements are dependent on the microbes' environment. The soil nutrition status and the quantity and quality of the substrate input, both infer different growth strategies of microorganisms. It is uncertain, how enzyme systems respond during the different phases of microbial growth and retardation in soil. The objective of this study was to uncover the changes of microbial functioning and their related enzyme systems in nutrient-poor and nutrient-rich beech forest soil during the phases of microbial growth. We determined microbial growth via kinetic approach by substrate-induced respiratory response of microorganisms, enabling the estimation of total, and growing biomass of the microbial community. To induce microbial growth we used glucose, while yeast extract simulated additional input of nutrients and factors indicating microbial residues (i.e., necromass compounds). Microbial growth on glucose showed a 12–18 h delay in associated enzyme activity increase or the absence of distinct activity responses (Vmax). β-glucosidase and chitinase (NAG) demonstrated clear differences of Vmax in time and between P-rich and P-poor soils. However, during microbial growth on glucose + yeast extract, the exponential increase in enzymatic activity was clearly stimulated accompanied by a delay of 8–12 h, smoothing the differences in nutrient-acquisition dynamics between the two soils. Furthermore, cross-correlation of β-glucosidase and acid phosphatase between the two sites demonstrated harmonized time constraints, which reflected the establishment of comparable and balanced enzymatic systems within the decomposition network

    Effects of climate and land use on carbon and nutrients cycles control soil organic matter pools at Mount Kilimanjaro

    Get PDF
    Ecosystem functions of tropical mountain ecosystems and their ability to provide ecosystem services are particularly threatened by the combined impact of climate and land-use change. Soils, as the linkage between abiotic and biotic components of an ecosystem, are strongly affected by these changes. To understand impacts of climate and land use changes on biodiversity and accompanying ecosystem stability and services at Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic controls on ecosystem Carbon (C) and nutrient fluxes are needed. Therefore, we quantitatively described cycles of C and major nutrients (N, P, K, Ca, Mg, Mn, Na, S) on pedon and stand level scale along a 3500 m elevation gradient and in up to three stages of land-use intensification. Qualitative indicators (composition of soil organic matter and microbial communities) were used to relate pool changes to underlying processes. Annual pattern of litterfall and decomposition were closely related to rainfall seasonality and temperature. Several factors, such as decomposition rate, C & N contents, microbial biomass (MBC) and leaf litter quality, increased at mid elevation. This was reflected in shifts of soil organic matter composition and microbial communities controlling soil C stability. Land-use intensification led to 40-80% losses in topsoil C and MBC contents as well as an increased turnover through higher microbial demand for new C sources. In ecosystems with strong seasonal variations (savanna and alpine helichrysum cushion) the effectiveness of C storage and N turnover was strongly affected by spatial vegetation heterogeneity. Ecosystems at mid elevation (~2000 m) represent the interception zone of optimal moisture and temperature conditions. High inputs and fast turnover control the C sequestration in these ecosystems, while climatic restrains on input and decomposition limit the C turnover in soils at lower and higher elevation. Land-use intensification increases C and nutrient cycling, decreases stabilization from new C inputs through increased microbial C demand and thus decreases soil C storage

    Impacts of Logging-Associated Compaction on Forest Soils: A Meta-Analysis

    Get PDF
    Soil compaction associated with mechanized wood harvesting can long-lastingly disturb forest soils, ecosystem function, and productivity. Sustainable forest management requires precise and deep knowledge of logging operation impacts on forest soils, which can be attained by meta-analysis studies covering representative forest datasets. We performed a meta-analysis on the impact of logging-associated compaction on forest soils microbial biomass carbon (MBC), bulk density, total porosity, and saturated hydraulic conductivity (Ksat) affected by two management factors (machine weight and passage frequency), two soil factors (texture and depth), and the time passed since the compaction event. Compaction significantly decreased soil MBC by −29.5% only in subsoils (>30 cm). Overall, compaction increased soil bulk density by 8.9% and reduced total porosity and Ksat by −10.1 and −40.2%, respectively. The most striking finding of this meta-analysis is that the greatest disturbance to soil bulk density, total porosity, and Ksat occurs after very frequent (>20) machine passages. This contradicts the existing claims that most damage to forest soils happens after a few machine passages. Furthermore, the analyzed physical variables did not recover to the normal level within a period of 3–6 years. Thus, altering these physical properties can disturb forest ecosystem function and productivity, because they play important roles in water and air supply as well as in biogeochemical cycling in forest ecosystems. To minimize the impact, we recommend the selection of suitable logging machines and decreasing the frequency of machine passages as well as logging out of rainy seasons especially in clayey soils. It is also very important to minimize total skid trail coverage for sustainable forest management

    Turnover of microbial groups and cell components in soil: <sup>13</sup>C analysis of cellular biomarkers

    Get PDF
    © 2017 The Author(s).Microorganisms regulate the carbon (C) cycle in soil, controlling the utilization and recycling of organic substances. To reveal the contribution of particular microbial groups to C utilization and turnover within the microbial cells, the fate of 13C-labelled glucose was studied under field conditions. Glucose-derived 13C was traced in cytosol, amino sugars and phospholipid fatty acid (PLFA) pools at intervals of 3, 10 and 50 days after glucose addition into the soil. 13C enrichment in PLFAs (∼1.5% of PLFA C at day 3) was an order of magnitude greater than in cytosol, showing the importance of cell membranes for initial C utilization. The 13C enrichment in amino sugars of living microorganisms at day 3 accounted for 0.57% of total C pool; as a result, we infer that the replacement of C in cell wall components is 3 times slower than that of cell membranes. The C turnover time in the cytosol (150 days) was 3 times longer than in PLFAs (47 days). Consequently, even though the cytosol pool has the fastest processing rates compared to other cellular compartments, intensive recycling of components here leads to a long C turnover time. Both PLFA and amino-sugar profiles indicated that bacteria dominated in glucose utilization. 13C enrichment decreased with time for bacterial cell membrane components, but it remained constant or even increased for filamentous microorganisms. 13C enrichment of muramic acid was the 3.5 times greater than for galactosamine, showing a more rapid turnover of bacterial cell wall components compared to fungal. Thus, bacteria utilize a greater proportion of low-molecular-weight organic substances, whereas filamentous microorganisms are responsible for further C transformations. Thus, tracing 13C in cellular compounds with contrasting turnover rates elucidated the role of microbial groups and their cellular compartments in C utilization and recycling in soil. The results also reflect that microbial C turnover is not restricted to the death or growth of new cells. Indeed, even within living cells, highly polymeric cell compounds are constantly replaced and renewed. This is especially important for assessing C fluxes in soil and the contribution of C from microbial residues to soil organic matter

    Fate of low molecular weight organic substances in an arable soil: From microbial uptake to utilisation and stabilisation

    Get PDF
    Microbial uptake and utilisation are the main transformation pathways of low molecular weight organic substances (LMWOS) in soil, but details on transformations are strongly limited. As various LMWOS classes enter biochemical cycles at different steps, we hypothesize that the percentage of their carbon (C) incorporation into microbial biomass and consequently stabilisation in soil are different. Representatives of the three main groups of LMWOS: amino acids (alanine, glutamate), sugars (glucose, ribose) and carboxylic acids (acetate, palmitate) - were applied at naturally-occurring concentrations into a loamy arable Luvisol in a field experiment. Incorporation of 13C from these LMWOS into extractable microbial biomass (EMB) and into phospholipid fatty acids (PLFAs) was investigated 3d and 10d after application. The microbial utilisation of LMWOS for cell membrane construction was estimated by replacement of PLFA-C with 13C.35-80% of initially applied LMWOS-13C was still present in the composition of soil organic matter after 10 days of experiment, with 10-24% of 13C incorporation into EMB at day three and 1-15% at day 10. Maximal incorporation of 13C into EMB was observed from sugars and the least from amino acids. Strong differences in microbial utilisation between LMWOS were observed mainly at day 10. Thus, despite similar initial rapid uptake by microorganisms, further metabolism within microbial cells accounts for the specific fate of C from various LMWOS in soils.13C from each LMWOS was incorporated into each PLFA. This reflects the ubiquitous utilisation of all LMWOS by all functional microbial groups. The preferential incorporation of palmitate into PLFAs reflects its role as a direct precursor for fatty acids. Higher 13C incorporation from alanine and glucose into specific PLFAs compared to glutamate, ribose and acetate reflects the preferential use of glycolysis-derived substances in the fatty acids synthesis.Gram-negative bacteria (16:1ω7c and 18:1ω7c) were the most abundant and active in LMWOS utilisation. Their high activity corresponds to a high demand for anabolic products, e.g. to dominance of pentose-phosphate pathway, i.e. incorporation of ribose-C into PLFAs. The 13C incorporation from sugars and amino acids into filamentous microorganisms was lower than into all prokaryotic groups. However, for carboxylic acids, the incorporation was in the same range (0.1-0.2% of the applied carboxylic acid 13C) as that of gram-positive bacteria. This may reflect the dominance of fungi and other filamentous microorganisms for utilisation of acidic and complex organics.Thus, we showed that despite similar initial uptake, C from individual LMWOS follows deviating metabolic pathways which accounts for the individual fate of LMWOS-C over 10 days. Consequently, stabilisation of C in soil is mainly connected with its incorporation into microbial compounds of various stability and not with its initial microbial uptake. © 2014 Elsevier Ltd

    Decreased rhizodeposition, but increased microbial carbon stabilization with soil depth down to 3.6 m

    Get PDF
    Despite the importance of subsoil carbon (C) deposition by deep-rooted crops in mitigating climate change and maintaining soil health, the quantification of root C input and its microbial utilization and stabilization below 1 m depth remains unexplored. We studied C input by three perennial deep-rooted plants (lucerne, kernza, and rosinweed) grown in a unique 4-m deep RootTower facility. 13C multiple pulse labeling was applied to trace C flows in roots, rhizodeposition, and soil as well as 13C incorporation into microbial groups by phospholipid fatty acids and the long-term stabilization of microbial residues by amino sugars. The ratio of rhizodeposited 13C in the PLFA and amino sugar pools was used to compare the relative microbial stability of rhizodeposited C across depths and plant species. Belowground C allocation between roots, rhizodeposits, and living and dead microorganisms indicated depth dependent plant investment. Rhizodeposition as a fraction of the total belowground C input declined from the topsoil (0–25 cm) to the deepest layer (360 cm), i.e., from 35%, 45%, and 36%–8.0%, 2.5%, and 2.7% for lucerne, kernza, and rosinweed, respectively, where lucerne had greater C input than the other species between 340 and 360 cm. The relative microbial stabilization of rhizodeposits in the subsoil across all species showed a dominance of recently assimilated C in microbial necromass, thus indicating a higher microbial stabilization of rhizodeposited C with depth. In conclusion, we traced photosynthates down to 3.6 m soil depth and showed that even relatively small C amounts allocated to deep soil layers will become microbially stabilized. Thus, deep-rooted crops, in particular lucerne are important for stabilization and storage of C over long time scales in deep soil
    corecore