37 research outputs found

    Challenges with sensitized recipients in pediatric heart transplantation

    Get PDF
    The sensitization of patients to human leukocyte antigens prior to heart transplantation is increasingly being recognized as an important challenge both before and after the transplant, and the effects of sensitization on clinical outcomes are just beginning to be understood. Many patients are listed with the requirement of a negative prospective or virtual crossmatch prior to accepting a donor organ. This strategy has been associated with both longer waitlist times and higher waitlist mortality. An alternative approach is to transplant across a potentially positive crossmatch while utilizing strategies to decrease the significance of the human leukocyte antigen antibodies. This review will examine the challenges and the impact of sensitization on pediatric patients prior to and following heart transplantation

    Effects of donor cause of death, ischemia time, inotrope exposure, troponin values, cardiopulmonary resuscitation, electrocardiographic and echocardiographic data on recipient outcomes: A review of the literature

    Full text link
    BackgroundHeart transplantation has become standard of care for pediatric patients with either end‐stage heart failure or inoperable congenital heart defects. Despite increasing surgical complexity and overall volume, however, annual transplant rates remain largely unchanged. Data demonstrating pediatric donor heart refusal rates of 50% suggest optimizing donor utilization is critical. This review evaluated the impact of donor characteristics surrounding the time of death on pediatric heart transplant recipient outcomes.MethodsAn extensive literature review was performed to identify articles focused on donor characteristics surrounding the time of death and their impact on pediatric heart transplant recipient outcomes.ResultsPotential pediatric heart transplant recipient institutions commonly receive data from seven different donor death‐related categories with which to determine organ acceptance: cause of death, need for CPR, serum troponin, inotrope exposure, projected donor ischemia time, electrocardiographic, and echocardiographic results. Although DITs up to 8 hours have been reported with comparable recipient outcomes, most data support minimizing this period to <4 hours. CVA as a cause of death may be associated with decreased recipient survival but is rare in the pediatric population. Otherwise, however, in the setting of an acceptable donor heart with a normal echocardiogram, none of the other data categories surrounding donor death negatively impact pediatric heart transplant recipient survival.ConclusionsEchocardiographic evaluation is the most important donor clinical information following declaration of brain death provided to potential recipient institutions. Considering its relative importance, every effort should be made to allow direct image visualization.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154939/1/petr13676.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154939/2/petr13676_am.pd

    The current state and key issues of pediatric heart transplantation

    No full text
    10.1016/j.ijt.2013.05.001Indian Journal of Transplantation7378-8

    Coagulation and Anticoagulation in Fontan Patients

    No full text
    Patients with a Fontan circulation for single-ventricle physiology are at increased risk of developing thromboembolic events. Thromboembolic events can lead to failure of the Fontan circulation, chronic sequelae in case of stroke, and early mortality. Controversies exist regarding the substrates, risk factors, and optimal detection methods for thromboembolic events. Despite the major clinical implications, there is currently no consensus regarding the optimal antithrombotic therapy to prevent or treat thromboembolic events after the Fontan procedure. In this review we aimed to untangle the available literature regarding antithrombotic prophylaxis and treatment for pediatric and adult Fontan patients. A decision-tree algorithm for thromboprophylaxis in Fontan patients is proposed. Additionally, the current state of knowledge is reviewed with respect to the epidemiology, pathophysiology, and detection of thromboembolic events in Fontan patients, and important evidence gaps are highlighted

    Histological validation of cardiovascular magnetic resonance T1 mapping markers of myocardial fibrosis in paediatric heart transplant recipients

    No full text
    Abstract Background Adverse fibrotic remodeling is detrimental to myocardial health and a reliable method for monitoring the development of fibrotic remodeling may be desirable during the follow-up of patients after heart transplantation (HTx). Quantification of diffuse myocardial fibrosis with cardiovascular magnetic resonance (CMR) has been increasingly applied and validated histologically in adult patients with heart disease. However, comparisons of CMR findings with histological fibrosis burden in children are lacking. This study aimed to compare native T1 times and extracellular volume fraction (ECV) derived from CMR with the degree of collagen on endomyocardial biopsy (EmBx), and to investigate the association between myocardial fibrosis and clinical as well as functional markers in children after HTx. Methods EmBx and CMR were performed on the same day. All specimens were stained with picrosirius red. The collagen volume fraction (CVF) was calculated as ratio of stained collagen area to total myocardial area on EmBx. Native T1 values and ECV were measured by CMR on a mid-ventricular short axis slice, using a modified look-locker inversion recovery approach. Results Twenty patients (9.9 ± 6.2 years of age; 9 girls) after HTx were prospectively enrolled, at a median of 1.3 years (0.02–12.6 years) post HTx, and compared to 24 controls (13.9 ± 2.6 years of age; 12 girls). The mean histological CVF was 10.0 ± 3.4%. Septal native T1 times and ECV were higher in HTx patients compared to controls (1008 ± 32 ms vs 979 ± 24 ms, p < 0.005 and 0.30 ± 0.03 vs 0.22 ± 0.03, p < 0.0001, respectively). CVF showed a moderate correlation with native T1 (r = 0.53, p < 0.05) as well as ECV (r = 0.46, p < 0.05). Native T1 time, but not ECV and CVF, correlated with ischemia time (r = 0.46, p < 0.05). Conclusions CMR-derived fibrosis markers correlate with histological degree of fibrosis on EmBx in children after HTx. Further, native T1 times are associated with longer ischemia times
    corecore