217 research outputs found

    Final technical report on fortification of salt

    Get PDF

    Development of Dynamic Sub-Grid Models for Variational Multiscale Methods

    Get PDF
    A dynamic Variational Multiscale Method (Hughes et al. 1998) is developed by leveraging the Germano procedure from classical Large-eddy Simulations (LES). The similarity between the classical and variational approaches is analyzed in the context of incompressible flow. This analysis leads to a consistent modeling approach for both incompressible and compressible flows, the latter being demonstrated in a priori testing for low-speed attached and separated boundary layers. Similar to the classical LES procedure from which it is derived, the variational dynamic procedure does not guarantee a positive semi-definite coefficient in the general case. However, reproducing the behavior of the classical LES dynamic approach is seen as a necessary first step to develop a VMM that automatically adjusts to the local resolution and flow physics

    Field tests for iodide, iodate, and iron : phase 2, final report

    Get PDF

    Design of a Variational Multiscale Method for Turbulent Compressible Flows

    Get PDF
    A spectral-element framework is presented for the simulation of subsonic compressible high-Reynolds-number flows. The focus of the work is maximizing the efficiency of the computational schemes to enable unsteady simulations with a large number of spatial and temporal degrees of freedom. A collocation scheme is combined with optimized computational kernels to provide a residual evaluation with computational cost independent of order of accuracy up to 16th order. The optimized residual routines are used to develop a low-memory implicit scheme based on a matrix-free Newton-Krylov method. A preconditioner based on the finite-difference diagonalized ADI scheme is developed which maintains the low memory of the matrix-free implicit solver, while providing improved convergence properties. Emphasis on low memory usage throughout the solver development is leveraged to implement a coupled space-time DG solver which may offer further efficiency gains through adaptivity in both space and time

    Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods

    Get PDF
    space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows

    A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Get PDF
    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases

    Spectral Element Method for the Simulation of Unsteady Compressible Flows

    Get PDF
    This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s

    A linear multigrid preconditioner for the solution of the Navier-Stokes equations using a discontinuous Galerkin discretization

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 69-72).A Newton-Krylov method is developed for the solution of the steady compressible Navier-Stokes equations using a Discontinuous Galerkin (DG) discretization on unstructured meshes. An element Line-Jacobi preconditioner is presented which solves a block tridiagonal system along lines of maximum coupling in the flow. An incomplete block-LU factorization (Block-ILU(O)) is also presented as a preconditioner, where the factorization is performed using a reordering of elements based upon the lines of maximum coupling used for the element Line-Jacobi preconditioner. This reordering is shown to be far superior to standard reordering techniques (Nested Dissection, One-way Dissection, Quotient Minimum Degree, Reverse Cuthill-Mckee) especially for viscous test cases. The Block-ILU(0) factorization is performed in-place and a novel algorithm is presented for the application of the linearization which reduces both the memory and CPU time over the traditional dual matrix storage format. A linear p-multigrid algorithm using element Line-Jacobi, and Block-ILU(O) smoothing is presented as a preconditioner to GMRES.(cont.) The coarse level Jacobians are obtained using a simple Galerkin projection which is shown to closely approximate the linearization of the restricted problem except for perturbations due to artificial dissipation terms introduced for shock capturing. The linear multigrid preconditioner is shown to significantly improve convergence in terms of the number of linear iterations as well as to reduce the total CPU time required to obtain a converged solution. A parallel implementation of the linear multi-grid preconditioner is presented and a grid repartitioning strategy is developed to ensure scalable parallel performance.by Laslo Tibor Diosady.S.M

    DNS of Flows over Periodic Hills using a Discontinuous-Galerkin Spectral-Element Method

    Get PDF
    Direct numerical simulation (DNS) of turbulent compressible flows is performed using a higher-order space-time discontinuous-Galerkin finite-element method. The numerical scheme is validated by performing DNS of the evolution of the Taylor-Green vortex and turbulent flow in a channel. The higher-order method is shown to provide increased accuracy relative to low-order methods at a given number of degrees of freedom. The turbulent flow over a periodic array of hills in a channel is simulated at Reynolds number 10,595 using an 8th-order scheme in space and a 4th-order scheme in time. These results are validated against previous large eddy simulation (LES) results. A preliminary analysis provides insight into how these detailed simulations can be used to improve Reynoldsaveraged Navier-Stokes (RANS) modelin

    Higher-Order Methods for Compressible Turbulent Flows Using Entropy Variables

    Get PDF
    Turbulent flows have a large range of spatial and temporal scales which need to be resolved in order to obtain accurate predictions. Higher-order methods can provide greater efficiency for simulations requiring high spatial and temporal resolution, allowing for solutions with fewer degrees of freedom and lower computational cost than traditional second-order computational fluid dynamics (CFD) methods.1 Higher-order methods have been widely used for turbulent flows. However, the reduced numerical stabilization present in higher-order schemes implies that special care needs to be taken in the development of numerical methods to suppress nonlinear instabilities.26 In this work we present the development of a higher-order space-time discontinuous Galerkin method with a focus on the aspects of our numerical scheme required for ensuring nonlinear stability for turbulent simulations at high Reynolds numbers
    corecore