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A spectral-element framework is presented for the simulation of subsonic compressible
high-Reynolds-number flows. The focus of the work is maximizing the efficiency of the
computational schemes to enable unsteady simulations with a large number of spatial and
temporal degrees of freedom. A collocation scheme is combined with optimized compu-
tational kernels to provide a residual evaluation with computational cost independent of
order of accuracy up to 16th order. The optimized residual routines are used to develop a
low-memory implicit scheme based on a matrix-free Newton-Krylov method. A precondi-
tioner based on the finite-difference diagonalized ADI scheme is developed which maintains
the low memory of the matrix-free implicit solver, while providing improved convergence
properties. Emphasis on low memory usage throughout the solver development is lever-
aged to implement a coupled space-time DG solver which may offer further efficiency gains
through adaptivity in both space and time.

I. Introduction

The Variational Multiscale Method (VMM) is a reformulation of the classical Large-eddy Simulation
(LES), where the filtering operation, used to explicitly separate resolved and unresolved scales, is replaced
by a finite-element projection operator.1 As projection and differentiation commute, VMM does not suffer
from commutation errors present in classical LES. VMM subgrid-scale models can be limited to the finest
computed modes, so that no modeling error is introduced into the resolved coarser modes.2 Combined with
adaptivity, this provides a robust h-p spectral-element framework for viscous simulations which has shown
promise for predicting attached wall-bounded flows.1,3–8

The ultimate objective of this work is to apply the VMM to compressible, high-Reynolds number sep-
arated flows where Direct Numerical Simulation (DNS) is impractical, and engineering Reynolds-Averaged
Navier-Stokes (RANS) turbulence models struggle to accurately capture the important flow features. Specif-
ically, our initial target is unsteady simulation of the Fundamental Aeronautics Investigation of The Hill
(FAITH) experiment,9 shown in Fig. 1. The FAITH experiment includes a number of quantitative and qual-
itative measurement techniques to characterize the separated flow over an axisymmetric hill at Reh = 500k,
where h is the height of the hill. VMM simulations will complement this experimental dataset with detailed
statistical measurements of the turbulence correlations and budget terms necessary to develop and validate
novel RANS models capable of predicting separated flows.

Simulation of the FAITH experiment with a wall-resolved VMM poses a significant computational chal-
lenge due to the high Reynolds number. To estimate the total cost, we consider a computational domain
including the majority of the wind-tunnel test section, with the wall-normal direction resolved to within
one friction length scale at the wall, i.e. Δy+|w = 1. Using the VMM, we estimate a requirement for the
average streamwise and spanwise resolution of Δx+ = Δz+ ≈ 20 respectively. To accurately propagate the
resolved turbulent fluctuations an appropriate unsteady time scale is required, which corresponds roughly to
a CFL=1 based on the r.m.s. mean velocity. With this temporal resolution, we bookkeep a simulation time
of 10 flow-through periods, which is a minimum to capture statistical measurements. From this, we estimate
a spatial computational mesh requiring on the order of 109 degrees of freedom (DOF), and a simulation time
requiring 109 timesteps, for a total of 1018 space-time DOF.
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(a) FAITH Model (b) Oil Flow and Pressure-sensitive Paint Visualization

Figure 1. Fundamental Aeronautics Investigation of The Hill (FAITH) experiment.9

Given these computational cost estimates, the efficiency of a VMM solver is critical to enabling FAITH
simulations. After surveying the open-source community, NASA, and NASA’s collaborative partnerships,
none of the available options for an existing spectral-element framework were deemed sufficient, or could be
easily modified, to provide the necessary efficiency and accuracy. From this, a decision was made to develop
a VMM spectral-element solver specifically for low-speed, high-Reynolds number flows over geometrically
simple configurations. The goal of this paper is to describe the design of this framework in terms of algorithm
choice, data layout in memory, and tightly-coupled optimizations for the target computer hardware. Specifi-
cally, we seek to minimize three weaknesses of high-order finite-element formulations - the high mathematical
operation count per element, the restrictive stability constraint for explicit methods, and the large memory
required for efficient implicit methods. The current work focuses solely on these numerical challenges, with
closure modeling and accurate reproduction of the relevant physics deferred to future discussions.

The paper begins with an introduction to the nomenclature and basic spectral-element formulation. From
this, algorithm and computational optimizations are discussed along with representative computational tim-
ings. A matrix-free implicit method is described, along with a novel method for incorporating a diagonalized
Alternating-Direction-Implicit (ADI) preconditioner. Lastly, a space-time formulation is presented which
effectively leverages spectral elements in space and time to reduce the computational cost. Two model
problems, convection of an isentropic vortex and the Taylor-Green vortex evolution, are used throughout to
provide computational examples. The paper concludes with a summary of the major points and some topics
for future work.

II. Spatial Discretization

The compressible Navier-Stokes equations are written in conservative form as:

∂u

∂t
+∇ · (F I − F V ) = 0 (1)

The conservative state vector is u = [ρ, ρv, ρE], where ρ is the density, v the velocity, and E the total energy.
The inviscid and viscous fluxes are given, respectively, by:

F I · n =

⎡
⎢⎣ ρvn

ρvvn + pn

ρHvn

⎤
⎥⎦ , vn = v · n, and F V =

⎡
⎢⎣ 0

τ

v · τ + κT∇T

⎤
⎥⎦ , (2)

where p is the static pressure, H = E+ p
ρ is the total enthalpy, τ is the shear stress tensor, κT is the thermal

conductivity, T = p/ρR is the temperature, and R is the gas constant. The pressure is given by:

p = (γ − 1)
(
ρE − 1

2ρv · v) , (3)

where γ is the specific heat ratio. The viscous stress tensor, τ , is given by:

τ = μ
(∇v +∇vT

)− λ(∇ · v)I (4)
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where μ is the viscosity, λ = 2
3μ is the bulk viscosity and I is the identity matrix.

In this work, we use a Galerkin finite-element method, which extends to arbitrary order of accuracy.
Higher-order methods show potential for simulations requiring high spatial and temporal resolution, allowing
for solutions with fewer degrees of freedom and lower computational cost than traditional second order CFD
methods.10 As this work is focused on subsonic flows without shocks, the exact solution is in C∞, and thus
we do not expect the convergence rate of our higher order scheme to be limited by solution irregularity.
Higher-order finite element methods are particularly attractive due to the possibility of using local h- and p-
adaptation. Galerkin finite-element methods have an increased number of operations, relative to high-order
finite-difference methods, due to the increased coupling between degrees of freedom. High-order finite-
difference schemes couple degrees of freedom along lines in each coordinate direction, so that the cost of a
residual evaluation scales as N × d for a fixed number of degrees of freedom, where N = p + 1 is the order
of accuracy and d the spatial dimension. A general Galerkin method couples all degrees of freedom on an
element, leading to a cost that scales asNd. This scaling suggests that in three dimensions, a general Galerkin
formulation is penalized in terms of operation count relative to finite-difference methods beyond third order.
In order to attain similar efficiency within a Galerkin framework, we use tensor product bases and a sum
factorization approach, such that differentiation and integration reduce to a sequence of one-dimensional
operations. This results in a cost which also scales as N × d.

The domain, Ω, is partitioned into non-overlapping hexahedral elements κ. We define a finite-element
space Vh consisting of piece-wise polynomial functions on each element κ:

Vh = {w,w|κ ∈ [P(κ)]m} (5)

where m = 5 is the number of flow equations. Choosing Vh to be C0-continuous across elements leads to
a continuous Galerkin (CG) discretization, while allowing Vh to be discontinuous across elements leads to
a discontinuous Galerkin (DG) discretization. We have developed a generic finite-element framework using
both CG and DG formulations, however, the results presented in this work focus on DG to clarify the
discussion.

We seek a solution u ∈ Vh which satisfies the weak form of Eq. (1):∑
κ

{∫
κ

(
w
∂u

∂t
−∇w · (F I − F V )

)
+

∫
∂κ

w(F̂
I − F̂

V
) · n

}
= 0 ∀w ∈ Vh. (6)

Here F̂
I
and F̂

V
denote numerical fluxes which are functions of the state on both sides of a face shared by

two elements, or state and boundary data for a face on the domain boundary. The inviscid flux is computed
using the Roe flux,11 while the viscous flux is computed using the method of Bassi and Rebay.12 In a CG
method, the surface integrals corresponding to faces on the interior of the domain cancel to zero, leaving
only surface integrals on the boundary of the domain.

Using a tensor product bases on each element, the solution u is given by a product of Lagrange polyno-
mials:

u(x(ξ)) =
∑
i,j,k

U ijkΦijk Φijk = φi(ξ1)φj(ξ2)φk(ξ3) (7)

where x(ξ) defines a mapping from the reference cube, ξ ⊂ [−1, 1]3, to physical space. φi is a one-dimensional
Lagrange basis defined at Gauss-Legendre (GL) or Gauss-Legendre-Lobatto (GLL) points, while U ijk is the
corresponding nodal value of the solution. The integrals in Eq. (6) are evaluated using numerical quadrature.
For volume integrals:∫

κ

(
w
∂u

∂t
−∇w · (F I − F V )

)
�

∑
p,q,r

{(
w
∂u

∂t
−∇ξw · (F̃ I − F̃

V
)

)
|J |

}
ξpξqξr

wpwqwr (8)

where ξp, ξq, ξr are one-dimensional GL or GLL quadrature points, and wp, wq and wr are the associated
quadrature weights. J denotes the Jacobian of the mapping from element reference space to physical space,

∇ξ denotes the gradient with respect to the local coordinate ξ, while F̃
I
= J−1F I and F̃

V
= J−1F V are the

fluxes mapped to the local element coordinate system. Similarly, surface integrals in Eq. (6) are evaluated
as: ∫

∂κ

w(F I − F V ) · n �
∑
p,q

{
w(F I − F V ) · n

}
ξpξq

wpwq (9)
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Both volume and surface integrals (Eqs. (8) and (9)) are performed as a sequence of three steps described
below:

1. Evaluation of the state and gradient at the quadrature points.

2. Evaluation of the fluxes at the quadrature points.

3. Multiplication of the fluxes with the gradient of the basis functions.

The sum-factorization approach13 is used in steps 1 and 3. The state at a particular quadrature point is
given by:

Ûpqr ≡ u(ξp, ξq, ξr) =
∑
i

∑
j

∑
k

U ijkφi|ξpφj |ξqφk|ξq (10)

The state evaluated at all quadrature points within an element is computed as:

Û = (B3 ⊗B2 ⊗B1)U = (B3 ⊗ I ⊗ I){(I ⊗B2 ⊗ I){(I ⊗ I ⊗B1)U}} (11)

where Û is vector of states at all quadrature points in an element, (B3 ⊗ B2 ⊗ B1) is the matrix formed as
the tensor product of Nq ×N matrices B1, B2 and B3, where Nq is the number of 1-dimensional quadrature
points, while N is the number of 1-dimensional basis functions. The entries of B1, B2 and B3 are:

[B1]pi = φi|ξp [B2]qj = φj |ξq [B3]rk = φk|ξr (12)

In Eq. (11), we show that the tensor product structure the multiplication of (B3 ⊗ B2 ⊗ B1), is performed
as a sequence of small matrix multiplications corresponding to each coordinate direction. The derivative of
the state with respect to ξ1 is computed at the quadrature points as:

∂Û

∂ξ1
= (B3 ⊗B2 ⊗D1)U = (B3 ⊗ I ⊗ I){(I ⊗B2 ⊗ I){(I ⊗ I ⊗D1)U}} (13)

where the entries of the matrix D1 are given by:

[D1]pi =
∂φi

∂ξ
|ξp (14)

Derivatives in the ξ2 and ξ3 directions are computed in a similar manner.
The use of the sum factorization approach leads to an operation count which scales as N × d for fixed

number of degrees of freedom. However, in order to further reduce the cost of our finite-element discretization
we use a collocation approach to compute the integrals involved in the residual. When using a collocation
approach, the solution points are used as quadrature points reducing the cost of the state and residual
evaluations since operations involving the matrices B1, B2 and B3 are eliminated (B1, B2 and B3 reduce to
the identity matrix, and hence multiplication by these terms is not necessary). The state is stored at the
collocation points and thus is directly available, while the derivatives are computed using terms of the form:

∂Û

∂ξ1
= (I ⊗ I ⊗D1)U (15)

The third step of the residual evaluation, requiring the weighting of the flux with the gradient of the basis
functions, is computed in a similar manner. Namely, using collocation, we compute volume terms of the
form:

Rκ = −(I ⊗ I ⊗D1)
T F̂ 1 − (I ⊗D2 ⊗ I)T F̂ 2 − (D3 ⊗ I ⊗ I)T F̂ 3 (16)

where F̂ 1 is the vector of fluxes scaled by the Jacobian determinant and quadrature weights at each point:[
F̂ 1

]
pqr

=
(
F̃ 1|J |

)
ξpξqξr

wpwqwr (17)

while F̂ 2 and F̂ 3 have similar forms.
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With the use of collocation and tensor products the amount of computational work is reduced to a
minimum, however we still have a high operation count per degree of freedom. We minimize this cost through
code optimization. Recently, increases in computational performance have been largely achieved through
increased parallelization, both through the use of systems with increasing number of processors, as well
as on-processor parallelization through threading and vectorization. High-order finite-element methods are
well suited to take advantage of parallel computing. The finite-element method provides a straight-forward
domain-decomposition with relatively little coupling between elements consisting only of data on element
interfaces. Thus, we take advantage of multi-processor parallelism with MPI-based message passing, where
the small amount of communication overhead is masked by overlapping communication and computation.
Additionally, operations local to an element are designed in such a way as to align data in a format well
suited to vectorization.

The finite-element framework developed here is designed for use with the computing resources at NASA
Ames Research Center. In particular, we look to use the Intel Sandy Bridge and Intel Xeon Phi micro-
processor architectures, as well as their future descendents, which achieve high-performance through single-
instruction/multiple-data (SIMD) vector operations. The Sandy Bridge architecture uses the Advanced
Vector Extensions (AVX) instruction set with a SIMD register of 256 bits (4 doubles), while the Xeon Phi
has a SIMD register of 512 bits (8 doubles) allowing 4 or 8 double operations to be performed in parallel.
In order to take full advantage of the available computing resources, it is essential to use the vectorizing
capabilities of these micro architectures. In particular, efficient vectorization requires alignment of data and
unit-stride memory operations.

In order to achieve high computational efficiency, we have optimized the numerical kernels involved in the
computation of the residual and reuse these kernels throughout our finite-element software. In particular, we
use a set of optimized matrix-matrix multiplication routines for computing the sum-factorization terms in
Eqs. (11), (14) and (16), while the evaluation of fluxes at collocation points is performed using data-aligned,
unit-stride vector functions.

The use of the sum-factorization approach and optimized routines allow for residual evaluations with a
computational cost that is nearly independent of N for N = [2, 16]. The CPU time for a residual evaluation,
normalized by the number of degrees of freedom for our DG discretization is shown in Fig. 2. The CPU time
is obtained by performing a simulation of the Taylor-Green vortex problem described in Section III.B on a
Sandy Bridge node of the Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node
consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory.
The simulations were performed with approximately 30000 degrees of freedom per core. Through optimized
linear algebra kernels, the increase in operation count with N is offset by more effective use of computing
resources. For N = [4, 16], the CPU time for a single residual evaluation is approximately 0.75μs/DOF
which is comparable to the cost for a residual evaluation using the OVERFLOW finite-difference code on
the same architecture. For reference, the TAU benchmark for this architecture runs in 7.6s.10
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Figure 2. CPU time for a single residual evaluation per degree of freedom on an Intel Sandy Bridge node
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III. Model Problems

Two model problems are used throughout to examine the behavior of the spectral-element framework.
These are the inviscid convection of a two-dimensional isentropic vortex, and viscous simulation of the
Taylor-Green vortex evolution. These problems are representative of the physics without containing solid
boundaries, which would necessarily require sub-grid modeling for any appreciable Reynolds number.

III.A. Convection of an Isentropic Vortex

The inviscid isentropic vortex convection problem is initialized with a perturbation about a uniform flow
given by:

δu = −U∞β
y − yc
R

e−
r2

2 (18)

δv = U∞β
x− xc

R
e−

r2

2 (19)

δ

(
P

ρ

)
=

1

2

γ

γ − 1
U2
∞β2e−r2 (20)

where U∞ is the convecting speed of the vortex, β = 1/5 is the vortex strength, R = 0.05 the characteristic
radius, and (xc, yc) the vortex center. The convection velocity is angled 30◦ from the x-direction so that
the flow does not align with the mesh. The exact solution to this flow is a pure convection of the vortex at
speed U∞. Figure 3 shows contours of the density after 5 periods for the simulation of the isentropic vortex
at a Mach number of 0.5 using N = 2 and N = 16 using 64 degrees of freedom in x- and y- directions.
Figure 3 demonstrates the benefits of higher-order methods as the 16th-order method is able to propagate
the vortex through 5 periods nearly exactly. The quantitative estimate of formal accuracy will be described
in Sec. V.A.

(a) N = 2 (b) N = 16

Figure 3. Density contours for isentropic vortex convection problem after 5 periods using N = 2 and N = 16 with 64
DOF in each coordinate direction.

III.B. Taylor-Green Vortex

The Taylor-Green vortex flow is simulated using the compressible Navier-Stokes equations at M0 = 0.1. The
flow is solved on an isotropic domain which spans [0, 2πL] in each coordinate direction. The initial conditions
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are given by:

u = V0 sin(x/L) cos(y/L) cos(z/L) (21)

v = −V0 cos(x/L) sin(y/L) cos(z/L) (22)

w = 0 (23)

p = ρ0V
2
0

[
1

γM2
0

+
1

16
(cos(2x) + sin(2y)) (cos(2z) + 2))

]
(24)

where u,v and w are the components of the velocity in the x, y and z-directions, p is the pressure and ρ is
the density. The flow is initialized to be isothermal (pρ = p0

ρ0
= RT0). Figure 4 shows the temporal evolution

of the kinetic energy dissipation rate −dEk

dt for the Taylor-Green vortex problem computed at a M0 = 0.1

and Re = ρ0V0L
μ = 1600 using 256 degrees of freedom in each coordinate direction. Figure 4 also shows

results using an incompressible spectral code with 512 degrees of freedom in each coordinate direction.14

Figure 5 show the corresponding iso-contours of vorticity at the point of peak dissipation using 2nd- and
16th- order schemes. The higher-order scheme is less dissipative than the 2nd-order scheme and is able to
more accurately match the spectral data.
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Figure 4. Taylor-Green vortex problem at M = 0.1, Re = 1600 computed using 2563 degrees of freedom

IV. Polynomial De-aliasing

A VMM or LES method resolves only large scale motion in a flow to reduce the computational cost
relative to DNS, with the unresolved finest scales modeled. While the coarsest scales are accurately resolved,
the finest representable scales in the flow are under-resolved. These under-resolved flows cause numerical
stability problems, especially for high-order numerical methods, and require some form of stabilization.
There are many techniques for stabilization within a CG or DG spectral-element framework.15–18 Here we
examine polynomial de-aliasing within an element18 (often referred to as “over-integration”) within a DG
framework to demonstrate the issues involved and performance. Section VI discusses some more general
issues for combining stabilization and physical modeling in a VMM for future work.

The use of numerical quadrature implies inexact projection of the nonlinear products in the flux terms onto
a finite-element space. This inexact projection causes aliasing errors and may ultimately lead to instability.
Similar to de-aliasing techniques in spectral methods, projecting the state variables to a higher polynomial
space to evaluate the nonlinear products, then projecting the result back to the original polynomial order,
can remove these aliasing errors.

For incompressible Navier-Stokes simulations, the nonlinear convection terms are quadratic in the state,
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(a) N = 2 (b) N = 16

Figure 5. Iso-contours of vorticity at peak dissipation for the Taylor-Green vortex evolution at M = 0.1, Re = 1600
computed using 2563 degrees of freedom.

implying that for a solution with N = p+1, exact projection of the nonlinear terms may be performed using
a Gaussian quadrature rule with 3/2N points.19 In the case of the compressible Navier-Stokes equations, the
nonlinearity in the inviscid flux is a rational function of the conservative state and Gaussian quadrature is
unable to exactly compute the projection of the Navier-Stokes equations onto the polynomial space.a It has
been suggested that since the inviscid flux in the compressible Navier-Stokes equations is a cubic function
of the primitive variables, using a quadrature rule with 2N points is sufficient,18,20 while others recommend
a 3/2N quadrature.21 Clearly these polynomial de-aliasing methods are somehwat ad-hoc for compressible
flows.

In order to understand the behavior of polynomial de-aliasing for subsonic compressible flows, we consider
the errors in integration introduced through the use of quadrature. As a model problem, we consider a one-
dimensional periodic domain using a single element with N = 16. We evaluate the spatial residual using
increasing quadrature rules. The residual is computed about a flow with mean Mach number of 0.2 with 20%
fluctuations in velocity and pressure. We consider flows with density fluctuations of 0, 5% and 20% about
the mean. Figure 6 plots the maximum error in the residual for the energy equation for each mode using a
Legendre polynomial basis, averaged over 100 random initial states. For flows with zero density fluctuation,
using the 3/2N quadrature points allows for exact integration of the lowest quartile of modes, while Gaussian
quadrature rules using 2N or more points are exact for all modes. When density perturbations exist in the
flow, then exact projection of the flux onto the polynomial space is not possible and an error is introduced
for all modes. However, for density fluctuations on the order of 5% the use of 2N points is able to reduce
this error by nearly 4 orders of magnitude. As the magnitude of the density fluctuations increases, additional
quadrature is required to accurately integrate the rational functions. This accuracy (or lack thereof) appears
to correlate with numerical stability, even in the presence of upwinding in the DG method. In particular, we
have found that with increasing Mach and Reynolds number, polynomial de-aliasing with 2N or 3N points
is not always sufficient.

We demonstrate the aliasing issue by performing a simulation of the Taylor-Green vortex evolution at a
M = 0.1 and Re = 1600 using 64 DOF in each coordinate direction. In this computation it is known that 64
DOF is under-resolved, however increasing resolution by only two or four times with a suitable high-order
scheme leads to relatively good predictions, so this is representative of an under-resolved LES simulation. In
Figure 7 we show the evolution of the kinetic energy dissipation rate using both collocation, and polynomial
de-aliasing with 2N points. Using collocation, for 2nd- and 4th- order the DG method provides sufficient
numerical dissipation to maintain stability, however the higher-order simulations become unstable. Using
polynomial de-aliasing with 2N quadrature points all of the simulations now remain stable, consistent with
the experience in the literature.20

aMaintaining standard conservative form for the compressible equations, it is possible to formulate the Navier-Stokes flux
terms purely as products of the primitive variables. In this situation multiplication by the inverse of the mass matrix leads to
rational functions.
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Figure 6. Errors in evaluation of the residual using numerical quadrature as a function of N with 20% variation in
velocity and pressure and density variation of a) 0, b) 5% c) 20%
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(a) Collocation
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(b) Polynomial de-aliasing 2N

Figure 7. Taylor-Green vortex problem at M = 0.1, Re = 1600 computed using meshes with 643 degrees of freedom using
a) collocation, and b) polynomial de-aliasing with 2N points
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Increasing the Reynolds number to Re = 16k further reduces the available resolution, and numerical
stability becomes difficult to maintain with either scheme. Figure 7 presents the kinetic energy dissipation
rate using both collocation and polynomial de-aliasing with 2N points for this higher Reynolds number.
While polynomial de-aliasing allows the simulation to progress further in time than using collocation, the
8th- and 16th-order simulations eventually become unstable. Increasing the de-aliasing to 3N points is
still insufficient to maintain stability for this test case. Given these results for a relatively benign problem,
stabilization is a concern for our more complex target flow which has higher speed, higher Reynolds number,
and larger perturbations. This is an area of planned future investigation.
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(a) Collocation
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(b) Polynomial de-aliasing 2N

Figure 8. Taylor-Green vortex problem at M = 0.2, Re = 16000 computed using meshes with 643 degrees of freedom
using a) collocation, and b) polynomial de-aliasing with 2N points

The use of polynomial de-aliasing with 2N quadrature points in each coordinate direction increases the
computational cost of a residual evaluation by roughly 10 times relative to collocation. For explicit time-
stepping schemes the simulation cost is driven entirely by the cost of residual evaluations and hence the use
of polynomial de-aliasing implies an order of magnitude increase in total computational cost. However, as
we’ll see in the next section, the use of explicit schemes with our spectral-element framework is impractical
for these high-Reynolds-number wall-bounded flows. For implicit time-stepping schemes, the cost of the
simulation is primarily driven by the cost of the linear solver for a Newton method. As such, the increased
cost of evaluating the target residual using a 2N quadrature rule is amortized over the linear solve, where
approximate methods may be employed. By switching to collocation in the linear solve we can effectively
provide both stability and efficiency while sacrificing very little in terms of convergence rate.

V. Temporal Discretization

V.A. Explicit

To introduce the notation and demonstrate the high-order performance, we consider an explicit time-stepping
scheme. This scheme also forms the basis of the preconditioner for the implicit scheme discussed in the
following section. Using the method of lines, the semi-discrete form of Eq. (6), is written as:

M
∂U

∂t
+R(U) = 0 (25)

where U is the vector of spatial degrees of freedom, R(U) is the spatial residual and M is the mass matrix:

Mij =
∑
κ

∫
κ

ΦiΦj . (26)

Equation (25) is a coupled system of ODEs which is solved numerically using an explicit time-stepping
scheme. Each stage of an explicit scheme requires inversion of the mass matrix. In general, a CG dis-
cretization has a mass-matrix which is globally coupled, while a DG formulation will have an element-wise
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block-diagonal mass matrix. In either case, the cost of the storing, factoring and inverting the mass matrix
is prohibitive, especially at high-order. However, using our collocation approach, the mass-matrix reduces
to an easily invertible diagonal matrix for either CG or DG formulations.

The use of GLL collocation to compute the mass matrix is inexact even in the case of elements with
constant Jacobians, as the GLL quadrature with N points is exact only for polynomials up to order 2N − 3.
In a CG formulation a GLL basis ensures that degrees of freedom are associated with edges, faces and nodes,
while use of a GL basis necessarily couples all degrees of freedom in the entire domain to ensure continuity.
On the other hand in a DG formulation, where the degrees of freedom are associated with elements, the use
of a GL collocated basis provides increased accuracy with minimal additional cost.

In order to demonstrate the numerical efficiency of different formulations we compute the isentropic
convection of a two-dimensional vortex described in Section III.A at a Mach number of 0.5. Figure 9 shows
the L2 error after 10 flow through periods. We use the DG collocation method with a classical 4th-order
explicit Runge-Kutta time-stepping scheme. For this problem the temporal error is orders of magnitude
lower than the spatial error, and the error is determined by the spatial error alone. As shown in Fig. 9,
the use of GL quadrature is more accurate than GLL quadrature for a fixed number of degrees of freedom.
The mass lumping with GLL quadrature reduces the order of accuracy of the scheme, consistent with the
observation in [22], where the error is shown to act as a filter. As such, the effect of mass lumping is more
significant at low order. We note that the reduced accuracy of using the GLL formulation is due solely to the
mass-lumping and not to the reduced quadrature in the integration of the spatial part of the residual. This
was verified by using more accurate quadrature for the spatial residual term, which gave results identical to
those using collocation.

As we are primarily concerned with efficiency, it is necessary to consider any additional cost of using
GL quadrature versus GLL quadrature. For a single residual evaluation, the cost of GL quadrature is
slightly more than GLL quadrature, due to evaluation of state or basis functions on element faces which
requires interpolation using GL points, while are directly available using GLL points. However, for a viscous
simulation interpolation of gradients is required (for either GLL or GL quadrature), and the additional cost
of interpolating the state at the same time is minimal (on the order of 1-2 % of a residual evaluation). Thus,
in terms of a single residual evaluation we view the use of the GL quadrature in a DG discretization as
removing the unnecessary filtering of the highest modes in a colocation scheme, at essentially no additional
cost.
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Figure 9. Isentropic vortex convection problem, Error vs. h using GL and GLL collocation

Explicit methods have a maximum time-step which is limited by the CFL condition. For high-Reynolds-
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number wall-bounded flows the numerical stiffness is greatly increased by the resolution required to accurately
compute gradients near the wall. While we are interested in computing unsteady flows, and thus our time
step is also limited by the desired temporal resolution of the physics of interest, the restriction due to stability
may be much more severe, particularly with increasing order of accuracy.

In order to demonstrate the stiffness associated with higher-order methods, we evaluate the maximum
stable CFL number using the classical 4th-order explicit Runge-Kutta scheme for two model problems. While
we are interested in solving viscous flows, the inviscid problem is representative of regions in the flow field
far from the wall where viscous effect do not play a significant role. The viscous simulation, performed using
a mesh size with cell Reynolds number, Reh ≡ ch

ν = O(1), is representative of near wall regions of the flow
field where fine mesh resolution is required to resolve steep gradients in the flow field.

Figure 10 presents the maximum stable CFL number versus solution orderN for the sample test problems.
We compute the CFL number based on the acoustic speed CFL = cΔt

h , where Δt is the time step, h =
√
DOF

is the resolution length scale and c the free-stream speed of sound. For the inviscid isentropic convection
problem, the maximum allowable time step scales as 1/N for a fixed number of degrees of freedom. When
the cell Reynolds number is O(1), the maximum stable time step scales as 1/N2 for a fixed number of degrees
of freedom. The scaling of the maximum allowable time step with N implies an increase in the number of
time steps (and hence cost) which scales linearly for inviscid problems and quadratically for viscous problems
as we increase the spatial resolution via increasing p. From this we see that our total computational cost
estimate outlined in the introduction increases by N2 with an explicit method, as our time-step is limited by
our most restrictive stability limit, making the simulations prohibitive for higher-order methods and negating
their advantage.
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Figure 10. Maximum CFL vs. solution order for the inviscid isentropic vortex convection problem and the viscous
Taylor-Green vortex problem at Reh = O(1).

V.B. Matrix-free Implicit

Implicit methods have the possibility for greater efficiency than explicit methods for higher-order methods,
but require the solution of a globally coupled nonlinear problem at each iteration. In order for implicit
methods to be competitive, the additional cost of solving this globally coupled problem must be offset by
a sufficient decrease in the computational work relative to explicit methods. The memory required for the
linearization of the residual grows rapidly with solution order N . Table 1 gives estimates of the memory
required to store the full Jacobian matrix for the FAITH problem described in Section I. For reference,
the state vector at a single time-step requires 40Gb of storage. Clearly, for the class of problems we are
considering the cost of storing this Jacobian matrix is prohibitive.

We choose a scheme with memory requirements similar to an explicit scheme, i.e. we trade the memory
for increased operations which can be hidden via optimization and algorithm choice. As such, we consider
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N Total Memory (Tb)

2 11

4 89

8 720

16 5700

Table 1. Estimated memory usage for storing the Jacobian for the FAITH simulation using 109 degrees of freedom.

Jacobian-free Newton-Krylov methods23 for the solution of the nonlinear problem arising at each iteration,

R∗(Un+1) = 0 (27)

where R∗(U) is the unsteady residual. In a Newton-Krylov method, Eq. (27) is solved using a Newton
iteration, where each Newton step requires the solution of a linear system:

∂R∗

∂U
ΔUk = −R∗(Uk) (28)

The linear system, Eq. (28), is solved using a Krylov method. In this work, we use a preconditioned
Generalized Minimal Residual (GMRES) algorithm as our Krylov method.24 In a Krylov method, the
matrix ∂R∗

∂U is not required; we only require the application of ∂R∗
∂U to a vector V , i.e. we need to compute

the Frechet derivative of R∗ in the GMRES search direction.
In this work we consider two approaches for computing the Frechet derivative. The first approach, is to

approximate the linearization using finite differences:

∂R∗

∂U
V � R∗(U + εV )−R∗(U)

ε
(29)

with suitable choise of step size ε.25 This approach allows the computation of a Frechet derivative for the
cost of a single residual evaluation. A particular advantage of this approach is that the approximate Frechet
derivative is available once the residual has been computed, and requires no linearization of residual terms.
This is particularly advantageous for turbulence models, as hand linearization of various modeling terms is
not required. On the other hand, the finite-difference computation of the Frechet derivative is sensitive to
the step length ε and inaccuracies in the Frechet derivative degrade the convergence of the Newton solver.23

An alternative approach is to compute the exact Frechet derivative. The exact Frechet derivative corre-
sponds to the linearized form of Eq. (6). As with the residual, the linearized forms of Eqs. (8) and (9) are
computed as a sequence of three steps:

1. Evaluation of the state, gradient, linearized state and linearized gradient (U , ∇U , V and ∇V ) at the
quadrature point.

2. Evaluation of the linearized fluxes (F Lin = ∂F
∂UV + ∂F

∂∇U∇V ) at the quadrature points.

3. Multiplication of the linearized fluxes with the gradient of the basis functions.

This approach is more expensive than the finite-difference approach, however, the additional cost eliminates
the dependence on ε, and is consistent with the solution of adjoint (dual) problems. In computing the exact
Frechet derivative, we reuse the optimized kernels described in Section II for computing the sum factorization,
though we require the additional hand linearization of the fluxes. In our implementation the cost of the exact
Frechet derivative is approximately 50% more than a residual evaluation, though some of this cost is offset
by improved convergence.

We demonstrate the benefits of an implicit method by simulating the Taylor-Green vortex evolution
at low Reynolds number(Re = 16) using 8th- and 16th-order spatial discretizations and 64 DOF in each
coordinate direction. We use a 4th-order, 5-stage, diagonally-implicit Runge-Kutta (DIRK) scheme as our
time-integration scheme. At each stage, the Newton-Krylov algorithm is used to reduce the unsteady residual
by 10 orders of magnitude, where at each Newton step the GMRES method is run until the linear residual

13 of 20

American Institute of Aeronautics and Astronautics



has been reduced by 6 orders of magnitude or a maximum of 20 Krylov vectors are used. We use the
mass-matrix as the preconditioner to GMRES.

The cost of the implicit (DIRK) scheme relative to the 4-stage explicit Runge-Kutta method is presented
in Fig. 11. We plot the cost as a function of time-step relative the explicit method and as a function of
the CFL number. For this viscous test case, with Reh = O(1), the maximum stable CFL for the explicit
method scales as 1/N2. The implicit method allows us to run at larger CFL number as the time-step is not
restricted due to stability, however, we limit the CFL to be O(1) in order to maintain temporal accuracy
of the simulation. The cost reported is the number of residual and Frechet derivative evaluations used for
the implicit scheme, divided by the number of residual evaluations required for the explicit scheme. At a
CFL number which corresponds to the largest stable timestep for the explicit scheme, the implicit scheme
would required significantly more than the explicit scheme. As expected, by increasing implicit timestep the
cost of the implicit scheme decreases relative to the explicit scheme. At CFL ≈ 1, the implicit method is
more efficient than the explicit method, requiring 15-25% of the residual evaluations for the explicit scheme
even though we are still only using the mass-matrix as a preconditioner. Increasing the CFL number much
beyond CFL ≈ 1 causes the GMRES algorithm to stall and a stronger preconditioner is required.
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Figure 11. Computational cost of using diagonally-implicit Runge-Kutta method relative to explicit Runge-Kutta
method for the Taylor-Green vortex problem (M = 0.1, Re = 16) using N = 8 and N = 16 with h = 1/

√
DOF = 1/64.

V.C. Preconditioning

Preconditioning is necessary for stiff problems in order of obtain good performance in a Newton-Krylov
scheme.23 An effective preconditioner approximates the inverse of the Jacobian matrix and has the effect
of clustering the eigenvalues of the preconditioned system, allowing for rapid convergence of the Krylov
scheme.23 We require preconditioning methods with minimal memory overhead as storage of a linearization is
prohibitive. To this end, we consider an element-wise block-Jacobi preconditioner where the elemental blocks
are solved approximately using an alternating-direction-implicit (ADI) scheme.26 We use a diagonalized
ADI scheme which has previously been used in finite-difference simulations,27 but to our knowledge not in
finite/spectral-element methods.

We derive the diagonalized ADI scheme by considering a constant coefficient problem:

∂u

∂t
+∇ · (Au) = 0 (30)

Applying a DG discretization with upwind flux, we have;∑
κ

{∫
κ

{
w
∂u

∂t
−∇w ·Au

}
+

∫
∂κ

wÂnu

}
= 0 (31)

where Ânu is the upwind flux evaluated as:

Ânu = 1
2An(u

+ + u−) + 1
2 |An|(u+ − u−) = A+

nu
+ +A−

nu
− (32)
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where An = A · n, while u+ and u− denote, respectively, trace values taken from inside or outside the
element κ. Applying a backward Euler time integration scheme, the contribution to Eq. (31) due to w and
u restricted to an element κ is given by:

r∗κ(w|κ,u|κ) ≡
∫
κ

{
w

1

Δt
un+1 −∇w ·Aun+1

}
+

∫
∂κ

wA+
nu

n+1 (33)

In Eq. (33), r∗κ(w|κ,u|κ) corresponds to an element-wise block diagonal entry of the Jacobian ∂R∗
∂U . Using

a tensor product basis in two-dimensions we write u = U ijφi(ξ1)φj(ξ2) and w = φm(ξ1)φn(ξ2). Integrating
in the reference element, the corresponding discrete form is given by:

∂R∗
mn

∂U ij
=

∫
ξ1

∫
ξ2

{
φmφn

1

Δt
φiφj − ∂φm

∂ξ1
φnÃ1φiφj − φm

∂φn

∂ξ2
Ã2φiφj

}
|J |

+

∫
ξ2

{
φmφnÃ

−
1 φiφj |J |

}
ξ1=−1

+

∫
ξ1

{
φmφnÃ

−
2 φiφj |J |

}
ξ1=−1

+

∫
ξ2

{
φmφnÃ

+

1 φiφj |J |
}
ξ1=1

+

∫
ξ1

{
φmφnÃ

+

2 φiφj |J |
}
ξ1=1

(34)

where Ã = J−1A, Ã
±
1 = 1

2 (Ã1±|Ã1|) and Ã
±
2 = 1

2 (Ã2±|Ã2|). Equation (34) is written in matrix form as:

1

|J |
∂R∗

κ

∂Uκ
=

(
M1 ⊗ I

Δt
⊗M2

)
−
(
D

I
1 ⊗ Ã1 ⊗M2

)
−
(
M1 ⊗ Ã2 ⊗ D

I
2

)
(35)

+
(
D

B−
1 ⊗ Ã

−
1 ⊗M2

)
+
(
M1 ⊗ Ã

−
2 ⊗ D

B−
2

)
+
(
D

B+
1 ⊗ Ã

+

1 ⊗M2

)
+
(
M1 ⊗ Ã

+

2 ⊗ D
B+
2

)
where

M1 =

∫
ξ1

φmφi D
I
1 =

∫
ξ1

∂φm

∂ξ1
φi D

B±
1 = {φmφi}ξ1=±1 (36)

M2 =

∫
ξ2

φnφj D
I
2 =

∫
ξ2

∂φn

∂ξ2
φj D

B±
2 = {φnφj}ξ2=±1 (37)

In Eq. (35), we have assumed that the Jacobian of the mapping from element reference space to physical
space is constant. The non-constant Jacobian case is addressed below. In order to clarify the derivation, we
define operators D1 and D2 which correspond to the action of interior and boundary convection operators in
the ξ1 and ξ2 directions, respectively, such that we may rewrite Eq. (35) as:

1

|J |
∂R∗

κ

∂Uκ
≡

(
M1 ⊗ I

Δt
⊗M2

)
−
(
D1 ⊗ Ã1 ⊗M2

)
−
(
M1 ⊗ Ã2 ⊗ D2

)
(38)

=

[(
M1 ⊗ I

Δt
⊗M2

)
−
(
D1 ⊗ Ã1 ⊗M2

)](
M1 ⊗ I

Δt
⊗M2

)−1 [(
M1 ⊗ I

Δt
⊗M2

)
−
(
M1 ⊗ Ã2 ⊗ D2

)]

−
(
D1 ⊗ Ã1 ⊗M2

)(
M1 ⊗ I

Δt
⊗M2

)−1 (
M1 ⊗ Ã2 ⊗ D2

)
(39)

Following [26] the second term in Eq. (39) is omitted resulting in the approximate inverse:

|J |
(
∂R∗

κ

∂Uκ

)−1

�
[(

M1 ⊗ I

Δt
⊗M2

)
−
(
D1 ⊗ Ã1 ⊗M2

)]−1 (
M1 ⊗ I

Δt
⊗M2

)
×

[(
M1 ⊗ I

Δt
⊗M2

)
−
(
M1 ⊗ Ã2 ⊗ D2

)]−1

(40)

=

{[(
M1 ⊗ I

Δt

)
−
(
D1 ⊗ Ã1

)]
⊗ I

}−1 (
I ⊗ I

Δt
⊗ I

)
×

{
I ⊗

[(
I

Δt
⊗M2

)
−
(
Ã2 ⊗ D2

)]}−1

(41)

Here we have factored terms in Eq. (41) to highlight that the inverses correspond to the solution of one-
dimensional problems in either ξ1 or ξ2 directions. The application of the ADI scheme can be computed
using the following sequence of steps:
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1. Solve N independent one-dimensional problems in the ξ1 direction.

2. Scale by the time-step.

3. Solve N independent one-dimensional problems in the ξ2 direction.

The one-dimensional problems in steps 1 and 3 have m coupled flow equations. Following Pulliam and
Chaussee27 a diagonal form of Eq. (41) is obtained using an eigenvalue decomposition of Ã. We write
Eq. (41) as:

|J |
(
∂R∗

κ

∂Uκ

)−1

�
{[(

M1 ⊗ I

Δt

)
− (

D1 ⊗ T−1
1 Λ1T 1

)]⊗ I

}−1 (
I ⊗ I

Δt
⊗ I

)
×

{
I ⊗

[(
I

Δt
⊗M2

)
− (

T−1
2 Λ2T 2 ⊗ D2

)]}−1

= (I ⊗ T 1 ⊗ I)

{[(
M1 ⊗ I

Δt

)
− (D1 ⊗Λ1)

]
⊗ I

}−1 (
I ⊗ T−1

1 T 2

Δt
⊗ I

)
×

{
I ⊗

[(
I

Δt
⊗ I

)
− (Λ2 ⊗ D2)

]}−1

(I ⊗ T−1
2 ⊗ I) (42)

where Λ1 and Λ2 are eigenvalues of Ã1 and Ã2 with corresponding eigenvector T 1 and T 2. The diagonalized
ADI scheme, corresponding to the action of the approximate inverse in Eq. (42), is summarized in the
following steps:

1. Transform to characteristic variables in the ξ1 direction at each collocation point.

2. Solve N ×m independent scalar one-dimensional advection problems in ξ1 direction.

3. Transform to characteristic variables in the ξ2 direction and scale by the time-step.

4. Solve N ×m scalar one-dimensional advection problems in ξ2 direction.

5. Transform back to original variables

We note that in the diagonalized ADI scheme, we solve one-dimensional scalar advection problems, as
opposed to a system of equations, which results in a savings without significant loss of convergence rate.
Specifically, the diagonalized scheme requires forming and factoring 3 N × N systems corresponding to 3
distinct eigenvalues as opposed to a 5N × 5N system for the full ADI scheme. This reduces the cost by
approximately a factor of 8.

In case of variable coefficients (or variable Jacobian) the linearization, ∂R∗
∂U , can not be expressed simply

as the sum of tensor product of matrices. However, we may still apply the steps of the ADI or diagonalized
ADI algorithms, recognizing that the one-dimensional problems now have variable coefficients. We note that
while for constant coefficient problems the ADI scheme and diagonalized ADI scheme are mathematically
equivalent. In the variable coefficient case the diagonalized scheme introduces an additional O(Δt) error.27

Applying the diagonalized ADI scheme for the solution of the isentropic vortex convection problem at a
Mach number of 0.5 with h =

√
DOF = 1/64, Figure 12 shows the convergence history for a typical stage

of the implicit scheme at CFL = 1.0 for 8th- and 16th-order solutions. The linear residual is plotted as a
function of the number of residual or Frechet derivative evaluations using both mass-matrix and diagonalized
ADI preconditioning. The diagonalized ADI scheme reduces the number of residual evaluations required by
about a factor of two for this problem. As the cost of applying the diagonalized ADI scheme is the same as a
single residual evaluation, the total CPU time for the diagonalized ADI scheme is same as using mass-matrix
preconditioning. However, using the diagonalized ADI scheme has the benefit that fewer Krylov vectors are
required.

The diagonalized ADI scheme is an effective low-memory preconditioner for convection dominated prob-
lems. In order to develop an efficient preconditioner for viscous dominated regions we intend to leverage our
spectral-element framework and pursue spectral/p-multigrid methods. Spectral/p-multigrid methods have
been widely used for CG spectral-element discretizations where theoretical and numerical results gives p-
independent convergence rates for elliptic problems.28,29 While no corresponding convergence theory exists
for DG discretizations, spectral/p- multigrid approaches have also been widely applied to DG discretiza-
tions.30–33
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Figure 12. Residual convergence history for a single Newton-Step using diagonally-implicit Runge-Kutta scheme for
the isentropic vortex convection problem with h = 1/

√
DOF = 1/64.

V.D. Space-Time formulation

The implicit method with preconditioning provides an efficient scheme for higher-order unsteady problems.
We can further improve this scheme by the use of a space-time formulation to integrate forward in time.
The use of a space-time formulation enables us to adapt locally in both the spatial and temporal directions,
similar to AMR methods with sub-cycling. Here the temporal spectral order (and hence the number of DOF)
is controlled, leading to a significant reduction in cost as the increased resolution in time is only applied
where necessary.

The space-time formulation is contrasted with the implicit Runge-Kutta scheme graphically in Figure
13. In an implicit RK scheme each stage is solved sequentially, requiring at each stage an implicit solve
corresponding to a problem which is globally coupled in space at a single point in time. In a space-time
formulation the solution is computed at the temporal collocation points. However, unlike the implicit scheme
all temporal collocation points within a time-slab are solved concurrently in a single globally coupled problem.
Figure 13 also depicts space-time adaptation, where different temporal solution orders are used in different
elements, potentially reducing the total cost.

Step

Stage

κ2
t0

t1

t2

κ1 κ3

(a) Implicit Runge-Kutta

Slab

κ2κ1 κ3
t0

t1

t2

(b) Space-Time

Figure 13. Graphical representation of implicit and space-time formulations. The implicit scheme requires a globally
coupled solve at each stages, while the space-time formulation requires a globally coupled solve over the entire space-
time slab.

Space-time formulations are generally considered too expensive for practical engineering simulations, as
they require the solution of a globally coupled system of equations for each time-slab. As we have noted,
the cost of storing the linearization for a single step of an implicit scheme is prohibitively expensive. Using
a space-time formulation this storage cost is scaled by the order of the basis used in the temporal direction.
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In the previous section, we demonstrate an implicit scheme with similar storage requirement as an explicit
method using a matrix-free approach and diagonalized ADI preconditioner. Leveraging this full matrix-free
approach allows us to afford the storage and efficient solution of the space-time formulation.

Define a time interval (time-slab) In = [tn, tn+1]. A space-time finite element space Vh consisting of
piece-wise polynomial functions in both space and time on each element κ is given by:

Vh = {w,w|κ ∈ [P(κ× I)]m} (43)

We seek a solution u ∈ Vh satisfying the weak form of Eq. (1):

∑
κ

{∫
I

∫
κ

(
−∂w

∂t
u−∇w · (F I − F V )

)
+

∫
I

∫
∂κ

w(F̂
I − F̂

V
) · n

+

∫
κ

w(tn+1
− )u(tn+1

− )−w(tn+)u(t
n
−)

}
= 0 ∀w ∈ Vh. (44)

As with our spatial discretization, we use a tensor product basis:

u(x(ξ), t(τ)) =
∑
i,j,k,l

UijklΦijkl Φijkl = φi(ξ1)φj(ξ2)φk(ξ3)φl(τ) (45)

where t(τ) defines a mapping from the reference interval τ ∈ [−1, 1] to the interval I = [tn, tn+1]. The
integrals in the space-time domain are computed using collocation and the sum-factorization approach,
leading to a residual evaluation cost which scales as N × (d+ 1). Equation (44) gives a system of nonlinear
equations of the form R∗(U) = 0, which must solved for each time slab. For a given spatial discretization,
the size of system which must be solved in each time slab is now N times larger than that for the implicit
scheme, as the space-time system involves all temporal collocation points in a space-time slab. We note
that this results in an increase relative to the implicit scheme in the memory required for the storage of the
Krylov vectors in GMRES. In the current implementation we can easily absorb this cost.

The efficiency of our space-time formulation hinges on the ability of the Newton-Krylov scheme to rapidly
converge the nonlinear problem arising at the time slab. We demonstrate the feasibility of space-time
approach using a simple mass-matrix preconditioning for the viscous Taylor-Green problem at Reh = O(1).
We solve the viscous Taylor-Green vortex problem at M = 0.1 and Re = 16 using 8th- and 16th-order
spatial discretizations using 64 degrees of freedom in each coordinate direction. We use 8th- and 16th-order
solutions respectively in the temporal direction. For each time-slab, the Newton-Krylov algorithm is used to
reduce the unsteady residual by 10 orders of magnitude. For each Newton iteration we use the mass-matrix
preconditioned GMRES method with 20 Krylov vectors.

Figure 14 shows the cost of the Taylor-Green simulation relative to the explicit scheme as a function of
the space-time CFL number CFL = cNΔt

h and the relative number of explicit time steps. In the accounting
in Figure 14 the cost of a space-time residual evaluation is N times that of a single spatial residual. As
the space-time formulation does not have a time-step limited by stability constraints, we are able to use
much larger time-steps than the explicit scheme. At CFL = O(1) the space-time formulation using a simple
mass-matrix preconditioner has a cost similar to the explicit scheme. We emphasize that our space-time
formulation has similar memory requirements as an explicit scheme, and using only a very simple mass-
matrix preconditioning has equivalent computational cost for viscous dominated problems. We anticipate
that for wall bounded flows with improved preconditioning the space-time formulation will provide significant
efficiency gain relative the explicit scheme.

VI. Summary and Future Work

This paper summarizes a CG and DG spectral-element framework for the simulation of compressible
high-Reynolds-number flows in the absence of discontinuities. The focus of the work is maximizing the
efficiency of the computational schemes in terms of memory and cpu time to enable unsteady simulations
with a large number of space-time DOF. A collocation scheme combined with optimized computational
kernels for the Intel SIMD extensions for x86 64 micro-architectures provides a residual evaluation with
computational cost independent of order of accuracy through 16th order, and competitive with existing low-
order production computing codes. This optimized residual framework is leveraged to provide an efficient
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Figure 14. Computational cost of using space-time formulation relative to explicit Runge-Kutta method for the Taylor-
Green vortex problem (M = 0.1, Re = 16) using N = 8 and N = 16 with h = 1/

√
DOF = 1/64.

implicit scheme based on a matrix-free Newton-Krylov nonlinear solver. A novel preconditioner based on the
finite-difference diagonalized ADI scheme was developed which maintains the low memory of the matrix-free
implicit solver, while still providing improved convergence properties for practical problems. Finally, the
emphasis on low memory usage throughout the solver development was leveraged to implement a coupled
space-time DG solver to efficiently provide spectral-element h−p adaptive capability in both space and time.

While there still remain some open items within the current documented capability, such as extending
the ADI preconditioning to space-time, the core functionality is designed and implemented. The next
step is to apply the new capability to benchmark turbulence problems, such as the Taylor-Green evolution,
isotropic turbulence and decay, and the wall-bounded planar channel flow, before progressing to more complex
separated flows. Further work is aimed at improving the existing capability further, primarily through the
planned use of a spectral-multigrid solver, and development of an appropriate closure model. We view the
closure modeling as coupled to the choice of stabilization strategy as in a variational multiscale framework
both numerical stabilization and the subgrid scale model approximate the effect of the unresolved modes
on the resolved modes.1,34 Thus, we will consider alternative stabilization strategies such as Streamline-
Upwind/Petrov-Galerkin (SUPG),35,36 Galerkin-Least-Square (GLS)37 or multiscale38 methods within our
finite-element framework.
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