349 research outputs found

    Elastic Instabilities of Polymer Solutions in Cross-Channel Flow

    Get PDF
    When polymer molecules pass near the hyperbolic point of a microchannel cross flow, they are strongly stretched. As the strain rate is varied at low Reynolds number ( \u3c 10-2), tracer and particle-tracking experiments show that molecular stretching produces two flow instabilities: one in which the velocity field becomes strongly asymmetric, and a second in which it fluctuates nonperiodically in time. The flow is strongly perturbed even far from the region of instability, and this phenomenon can be used to produce mixing

    Environmental regulation of the neural epigenome

    Get PDF
    AbstractParental effects are a major source of phenotypic plasticity. Moreover, there is evidence from studies with a wide range of species that the relevant parental signals are influenced by the quality of the parental environment. The link between the quality of the environment and the nature of the parental signal is consistent with the idea that parental effects, whether direct or indirect, might serve to influence the phenotype of the offspring in a manner that is consistent with the prevailing environmental demands. In this review we explore recent studies from the field of ‘environmental epigenetics’ that suggest that (1) DNA methylation states are far more variable than once thought and that, at least within specific regions of the genome, there is evidence for both demethylation and remethylation in post-mitotic cells and (2) that such remodeling of DNA methylation can occur in response to environmentally-driven, intracellular signaling pathways. Thus, studies of variation in mother–offspring interactions in rodents suggest that parental signals operate during pre- and/or post-natal life to influence the DNA methylation state at specific regions of the genome leading to sustained changes in gene expression and function. We suggest that DNA methylation is a candidate mechanism for parental effects on phenotypic variation

    Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: The effects of thyroid hormones and serotonin

    Get PDF
    Postnatal handling increases glucocorticoid receptor expression in the rat hippocampus, thus altering the regulation of hypothalamic synthesis of corticotropin-releasing hormone and the hypothalamic–pituitary–adrenal response to stress. The effect on glucocorticoid receptor gene expression represents one mechanism by which the early environment can exert a long-term effect on neural development. The handling effect on hippocampal glucocorticoid receptor expression is dependent on peripheral thyroid hormone release and the activation of ascending serotonergic pathways. In primary hippocampal cell cultures, serotonin (5-HT) increases glucocorticoid receptor expression, and this effect appears to be mediated by increased cAMP levels. In the current studies we examined thein vivoeffects of handling on hippocampal cAMP–protein kinase A (PKA) activity. In 7-d-old rat pups, we found that (1) postnatal handling increased adenylyl cyclase activity and hippocampal cAMP levels, (2) the effect of handling on cAMP levels was completely blocked by treatment with either propylthiouracil (PTU), a thyroid hormone synthesis inhibitor, or the 5-HT receptor antagonist, ketanserin, and (3) handling also increased hippocampal PKA activity. We then examined the effects of handling on cAMP-inducible transcription factors. Handling rapidly increased levels of the mRNAs for nerve growth factor-inducible factor A (NGFI-A) (zif268,krox24) and activator protein-2 (AP-2) as well as for NGFI-A and AP-2 immunoreactivity throughout the hippocampus. Finally, we found that the effects of handling on NGFI-A and AP-2 expression were significantly reduced by concurrent treatment with either PTU or ketanserin, effects that paralleled those on cAMP formation. NGFI-A and AP-2 have been implicated in the regulation of glucocorticoid receptor expression during development. Thus, these findings suggest that postnatal handling might alter glucocorticoid receptor gene expression via cAMP–PKA pathways involving the activation of NGFI-A and AP-2.</jats:p

    Studies on the Ultrastructure of Fibrin Lacking Fibrinopeptide B (β-Fibrin)

    Get PDF
    Release of fibrinopeptide B from fibrinogen by copperhead venom procoagulant enzyme results in a form of fibrin (beta-fibrin) with weaker self-aggregation characteristics than the normal product (alpha beta-fibrin) produced by release of fibrinopeptides A (FPA) and B (FPB) by thrombin. We investigated the ultrastructure of these two types of fibrin as well as that of beta-fibrin prepared from fibrinogen Metz (A alpha 16 Arg----Cys), a homozygous dysfibrinogenemic mutant that does not release FPA. At 14 degrees C and physiologic solvent conditions (0.15 mol/L of NaCl, 0.015 mol/L of Tris buffer pH 7.4), the turbidity (350 nm) of rapidly polymerizing alpha beta-fibrin (thrombin 1 to 2 U/mL) plateaued in less than 6 min and formed a “coarse” matrix consisting of anastomosing fiber bundles (mean diameter 92 nm). More slowly polymerizing alpha beta-fibrin (thrombin 0.01 and 0.001 U/mL) surpassed this turbidity after greater than or equal to 60 minutes and concomitantly developed a network of thicker fiber bundles (mean diameters 118 and 186 nm, respectively). Such matrices also contained networks of highly branched, twisting, “fine” fibrils (fiber diameters 7 to 30 nm) that are usually characteristic of matrices formed at high ionic strength and pH. Slowly polymerizing beta-fibrin, like slowly polymerizing alpha beta-fibrin, displayed considerable quantities of fine matrix in addition to an underlying thick cable network (mean fiber diameter 135 nm), whereas rapidly polymerizing beta-fibrin monomer was comprised almost exclusively of wide, poorly anastomosed, striated cables (mean diameter 212 nm). Metz beta-fibrin clots were more fragile than those of normal beta-fibrin and were comprised almost entirely of a fine network. Metz fibrin could be induced, however, to form thick fiber bundles (mean diameter 76 nm) in the presence of albumin at a concentration (500 mumol/L) in the physiologic range and resembled a Metz plasma fibrin clot in that regard. The diminished capacity of Metz beta-fibrin to form thick fiber bundles may be due to impaired use or occupancy of a polymerization site exposed by FPB release. Our results indicate that twisting fibrils are an inherent structural feature of all forms of assembling fibrin, and suggest that mature beta-fibrin or alpha beta-fibrin clots develop from networks of thin fibrils that have the ability to coalesce to form thicker fiber bundles

    Structural and molecular rationale for the diversification of resistance mediated by the Antibiotic_NAT family

    Get PDF
    The environmental microbiome harbors a vast repertoire of antibiotic resistance genes (ARGs) which can serve as evolutionary predecessors for ARGs found in pathogenic bacteria, or can be directly mobilized to pathogens in the presence of selection pressures. Thus, ARGs from benign environmental bacteria are an important resource for understanding clinically relevant resistance. Here, we conduct a comprehensive functional analysis of the Antibiotic_NAT family of aminoglycoside acetyltransferases. We determined a pan-family antibiogram of 21 Antibiotic_NAT enzymes, including 8 derived from clinical isolates and 13 from environmental metagenomic samples. We find that environment-derived representatives confer high-level, broad-spectrum resistance, including against the atypical aminoglycoside apramycin, and that a metagenome-derived gene likely is ancestral to an aac(3) gene found in clinical isolates. Through crystallographic analysis, we rationalize the molecular basis for diversification of substrate specificity across the family. This work provides critical data on the molecular mechanism underpinning resistance to established and emergent aminoglycoside antibiotics and broadens our understanding of ARGs in the environment

    Financial crises and the attainment of the SDGs: an adjusted multidimensional poverty approach

    Get PDF
    This paper analyses the impact of financial crises on the Sustainable Development Goal of eradicating poverty. To do so, we develop an adjusted Multidimensional Poverty Framework (MPF) that includes 15 indicators that span across key poverty aspects related to income, basic needs, health, education and the environment. We then use an econometric model that allows us to examine the impact of financial crises on these indicators in 150 countries over the period 1980–2015. Our analysis produces new estimates on the impact of financial crises on poverty’s multiple social, economic and environmental aspects and equally important captures dynamic linkages between these aspects. Thus, we offer a better understanding of the potential impact of current debt dynamics on Multidimensional Poverty and demonstrate the need to move beyond the boundaries of SDG1, if we are to meet the target of eradicating poverty. Our results indicate that the current financial distress experienced by many low-income countries may reverse the progress that has been made hitherto in reducing poverty. We find that financial crises are associated with an approximately 10% increase of extreme poor in low-income countries. The impact is even stronger in some other poverty aspects. For instance, crises are associated with an average decrease of government spending in education by 17.72% in low-income countries. The dynamic linkages between most of the Multidimensional Poverty indicators, warn of a negative domino effect on a number of SDGs related to poverty, if there is a financial crisis shock. To pre-empt such a domino effect, the specific SDG target 17.4 on attaining long-term debt sustainability through coordinated policies plays a key role and requires urgent attention by the international community

    Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer

    Get PDF
    PURPOSE: Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease with current standard-of-care therapies. Homologous recombination repair (HRR) gene alterations, including BRCA1/2 alterations, can sensitize cancer cells to poly (ADP-ribose) polymerase inhibition, which may improve outcomes in treatment-naïve mCRPC when combined with androgen receptor signaling inhibition. METHODS: MAGNITUDE (ClinicalTrials.gov identifier: NCT03748641) is a phase III, randomized, double-blinded study that evaluates niraparib and abiraterone acetate plus prednisone (niraparib + AAP) in patients with (HRR+, n = 423) or without (HRR-, n = 247) HRR-associated gene alterations, as prospectively determined by tissue/plasma-based assays. Patients were assigned 1:1 to receive niraparib + AAP or placebo + AAP. The primary end point, radiographic progression-free survival (rPFS) assessed by central review, was evaluated first in the BRCA1/2 subgroup and then in the full HRR+ cohort, with secondary end points analyzed for the full HRR+ cohort if rPFS was statistically significant. A futility analysis was preplanned in the HRR- cohort. RESULTS: Median rPFS in the BRCA1/2 subgroup was significantly longer in the niraparib + AAP group compared with the placebo + AAP group (16.6 v 10.9 months; hazard ratio [HR], 0.53; 95% CI, 0.36 to 0.79; P = .001). In the overall HRR+ cohort, rPFS was significantly longer in the niraparib + AAP group compared with the placebo + AAP group (16.5 v 13.7 months; HR, 0.73; 95% CI, 0.56 to 0.96; P = .022). These findings were supported by improvement in the secondary end points of time to symptomatic progression and time to initiation of cytotoxic chemotherapy. In the HRR- cohort, futility was declared per the prespecified criteria. Treatment with niraparib + AAP was tolerable, with anemia and hypertension as the most reported grade ≥ 3 adverse events. CONCLUSION: Combination treatment with niraparib + AAP significantly lengthened rPFS in patients with HRR+ mCRPC compared with standard-of-care AAP

    Genotypes and haplotypes in the insulin-like growth factors, their receptors and binding proteins in relation to plasma metabolic levels and mammographic density

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased mammographic density is one of the strongest independent risk factors for breast cancer. It is believed that one third of breast cancers are derived from breasts with more than 50% density. Mammographic density is affected by age, BMI, parity, and genetic predisposition. It is also greatly influenced by hormonal and growth factor changes in a woman's life cycle, spanning from puberty through adult to menopause. Genetic variations in genes coding for hormones and growth factors involved in development of the breast are therefore of great interest. The associations between genetic polymorphisms in genes from the IGF pathway on mammographic density and circulating levels of IGF1, its binding protein IGFBP3, and their ratio in postmenopausal women are reported here.</p> <p>Methods</p> <p>Samples from 964 postmenopausal Norwegian women aged 55-71 years were collected as a part of the Tromsø Mammography and Breast Cancer Study. All samples were genotyped for 25 SNPs in IGF1, IGF2, IGF1R, IGF2R, IGFALS and IGFBP3 using Taqman (ABI). The main statistical analyses were conducted with the PROC HAPLOTYPE procedure within SAS/GENETICS™ (SAS 9.1.3).</p> <p>Results</p> <p>The haplotype analysis revealed six haploblocks within the studied genes. Of those, four had significant associations with circulating levels of IGF1 or IGFBP3 and/or mammographic density. One haplotype variant in the IGF1 gene was found to be associated with mammographic density. Within the IGF2 gene one haplotype variant was associated with levels of both IGF1 and IGFBP3. Two haplotype variants in the IGF2R were associated with the level of IGF1. Both variants of the IGFBP3 haplotype were associated with the IGFBP3 level and indicate regulation in cis.</p> <p>Conclusion</p> <p>Polymorphisms within the IGF1 gene and related genes were associated with plasma levels of IGF1, IGFBP3 and mammographic density in this study of postmenopausal women.</p
    • …
    corecore