74 research outputs found

    Population sensitivity of acute flaccid paralysis and environmental surveillance for serotype 1 poliovirus in Pakistan: an observational study.

    Get PDF
    BACKGROUND: To support poliomyelitis eradication in Pakistan, environmental surveillance (ES) of wastewater has been expanded alongside surveillance for acute flaccid paralysis (AFP). ES is a relatively new method of surveillance, and the population sensitivity of detecting poliovirus within endemic settings requires estimation. METHODS: Data for wild serotype 1 poliovirus from AFP and ES from January 2011 to September 2015 from 14 districts in Pakistan were analysed using a multi-state model framework. This framework was used to estimate the sensitivity of poliovirus detection from each surveillance source and parameters such as the duration of infection within a community. RESULTS: The location and timing of poliomyelitis cases showed spatial and temporal variability. The sensitivity of AFP surveillance to detect serotype 1 poliovirus infection in a district and its neighbours per month was on average 30.0% (95% CI 24.8-35.8) and increased with the incidence of poliomyelitis cases. The average population sensitivity of a single environmental sample was 59.4% (95% CI 55.4-63.0), with significant variation in site-specific estimates (median varied from 33.3-79.2%). The combined population sensitivity of environmental and AFP surveillance in a given month was on average 98.1% (95% CI 97.2-98.7), assuming four samples per month for each site. CONCLUSIONS: ES can be a highly sensitive supplement to AFP surveillance in areas with converging sewage systems. As ES for poliovirus is expanded, it will be important to identify factors associated with variation in site sensitivity, leading to improved site selection and surveillance system performance

    Distinct expression profiles of TGF-β1 signaling mediators in pathogenic SIVmac and non-pathogenic SIVagm infections

    Get PDF
    BACKGROUND: The generalized T-cell activation characterizing HIV-1 and SIVmac infections in humans and macaques (MACs) is not found in the non-pathogenic SIVagm infection in African green monkeys (AGMs). We have previously shown that TGF-β1, Foxp3 and IL-10 are induced very early after SIVagm infection. In SIVmac-infected MACs, plasma TGF-β1 induction persists during primary infection [1]. We raised the hypothesis that MACs are unable to respond to TGF-β1 and thus cannot resorb virus-driven inflammation. We therefore compared the very early expression dynamics of pro- and anti-inflammatory markers as well as of factors involved in the TGF-β1 signaling pathway in SIV-infected AGMs and MACs. METHODS: Levels of transcripts encoding for pro- and anti-inflammatory markers (tnf-α, ifn-γ, il-10, t-bet, gata-3) as well as for TGF-β1 signaling mediators (smad3, smad4, smad7) were followed by real time PCR in a prospective study enrolling 6 AGMs and 6 MACs. RESULTS: During primary SIVmac infection, up-regulations of tnf-α, ifn-γ and t-bet responses (days 1–16 p.i.) were stronger whereas il-10 response was delayed (4(th )week p.i.) compared to SIVagm infection. Up-regulation of smad7 (days 3–8 p.i.), a cellular mediator inhibiting the TGF-β1 signaling cascade, characterized SIV-infected MACs. In AGMs, we found increases of gata-3 but not t-bet, a longer lasting up-regulation of smad4 (days 1–21 p.i), a mediator enhancing TGF-β1 signaling, and no smad7 up-regulations. CONCLUSION: Our data suggest that the inability to resorb virus-driven inflammation and activation during the pathogenic HIV-1/SIVmac infections is associated with an unresponsiveness to TGF-β1

    Changes in the Molecular Epidemiology of Pediatric Bacterial Meningitis in Senegal After Pneumococcal Conjugate Vaccine Introduction.

    Get PDF
    BACKGROUND: Bacterial meningitis is a major cause of mortality among children under 5 years of age. Senegal is part of World Health Organization-coordinated sentinel site surveillance for pediatric bacterial meningitis surveillance. We conducted this analysis to describe the epidemiology and etiology of bacterial meningitis among children less than 5 years in Senegal from 2010 and to 2016. METHODS: Children who met the inclusion criteria for suspected meningitis at the Centre Hospitalier National d'Enfants Albert Royer, Senegal, from 2010 to 2016 were included. Cerebrospinal fluid specimens were collected from suspected cases examined by routine bacteriology and molecular assays. Serotyping, antimicrobial susceptibility testing, and whole-genome sequencing were performed. RESULTS: A total of 1013 children were admitted with suspected meningitis during the surveillance period. Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus accounted for 66% (76/115), 25% (29/115), and 9% (10/115) of all confirmed cases, respectively. Most of the suspected cases (63%; 639/1013) and laboratory-confirmed (57%; 66/115) cases occurred during the first year of life. Pneumococcal meningitis case fatality rate was 6-fold higher than that of meningococcal meningitis (28% vs 5%). The predominant pneumococcal lineage causing meningitis was sequence type 618 (n = 7), commonly found among serotype 1 isolates. An ST 2174 lineage that included serotypes 19A and 23F was resistant to trimethoprim-sulfamethoxazole. CONCLUSIONS: There has been a decline in pneumococcal meningitis post-pneumococcal conjugate vaccine introduction in Senegal. However, disease caused by pathogens covered by vaccines in widespread use still persists. There is need for continued effective monitoring of vaccine-preventable meningitis

    Epidemiology of type 2 vaccine-derived poliovirus outbreaks between 2016 and 2020.

    Get PDF
    The number and geographic breadth of circulating vaccine-derived poliovirus type 2 (cVDPV2) outbreaks detected after the withdrawal of type 2 containing oral polio vaccine (April 2016) have exceeded forecasts.Using Acute Flaccid Paralysis (AFP) investigations and environmental surveillance (ES) data from the Global Polio Laboratory Network, we summarize the epidemiology of cVDPV2 outbreaks. Between 01 January 2016 to 31 December 2020, a total of 68 unique cVDPV2 genetic emergences were detected across 34 countries. The cVDPV2 outbreaks have been associated with 1596 acute flaccid paralysis cases across four World Health Organization regions: 962/1596 (60.3%) cases occurred in African Region; 619/1596 (38.8%) in the Eastern Mediterranean Region; 14/1596 (0.9%) in Western-Pacific Region; and 1/1596 (0.1%) in the European Region. As the majority of the cVDPV2 outbreaks have been seeded through monovalent type 2 oral poliovirus vaccine (mOPV2) use in outbreak responses, the introduction of the more stable novel oral poliovirus vaccine will be instrumental in stopping emergence of new cVDPV2 lineages

    Case study of Daga-Birame CSV for CCAFS ISP11/6.1.2 – Senegal

    Get PDF
    Senegal, with 196,712 km2 land area, is located at the extreme west of the African continent (Longitudes 11°21W - 17°32N and Latitudes 12°8N - 16°41N). The country’s soils are in general of low fertility, fragile and very susceptible to wind and water erosion. The climate is of Sudano-Sahelian type characterized by alternating dry season (November to May) and rainy season (June to October). The 700 km coastline brings climatic differences between coastal areas and inland zones. Rainfall amount follows a latitudinal variation going from 300 mm in the north semi-desertic areas to 1200 mm in the south. Senegal is divided into 7 agro-ecological zones for management perspectives: River Valley, Niayes, Groundnut Basin (North and South), Silvo-Pastoral zone, Eastern Senegal and Upper Casamance, Lower Casamance (CIAT-BFS/USAID, 2016). The country’s economy is mainly driven by crop and livestock production contributing 17% of the GDP and employing about 70% of the population (NAPA, Republic of Senegal 2006). Like other sub-Saharan African countries, Senegal faces food insecurity as a consequence of climate variability and change combined with other global changes (Zougmoré et al., 2015)

    Update on Immunodeficiency-Associated Vaccine-Derived Polioviruses - Worldwide, July 2018-December 2019.

    Get PDF
    Since establishment of the Global Polio Eradication Initiative* in 1988, polio cases have declined >99.9% worldwide; extensive use of live, attenuated oral poliovirus vaccine (OPV) in routine childhood immunization programs and mass campaigns has led to eradication of two of the three wild poliovirus (WPV) serotypes (types 2 and 3) (1). Despite its safety record, OPV can lead to rare emergence of vaccine-derived polioviruses (VDPVs) when there is prolonged circulation or replication of the vaccine virus. In areas with inadequate OPV coverage, circulating VDPVs (cVDPVs) that have reverted to neurovirulence can cause outbreaks of paralytic polio (2). Immunodeficiency-associated VDPVs (iVDPVs) are isolated from persons with primary immunodeficiency (PID). Infection with iVDPV can progress to paralysis or death of patients with PID, and excretion risks seeding cVDPV outbreaks; both risks might be reduced through antiviral treatment, which is currently under development. This report updates previous reports and includes details of iVDPV cases detected during July 2018-December 2019 (3). During this time, 16 new iVDPV cases were reported from five countries (Argentina, Egypt, Iran, Philippines, and Tunisia). Alongside acute flaccid paralysis (AFP) surveillance (4), surveillance for poliovirus infections among patients with PID has identified an increased number of persons excreting iVDPVs (5). Expansion of PID surveillance will facilitate early detection and follow-up of iVDPV excretion among patients with PID to mitigate the risk for iVDPV spread. This will be critical to help identify all poliovirus excretors and thus achieve and maintain eradication of all polioviruses
    corecore