35 research outputs found

    Performance comparison of aperture-less and confocal infrared microscopes

    Get PDF
    We compared hyperspectral infrared raster maps and images for contrast, definition and resolution of the same samples recorded with a confocal microscope coupled with a synchrotron radiation source vs a Focal Plane Array (FPA) detector equipped microscope. Biological samples (hair and skin sections) and astrophysics samples (meteoritic grains) were used. The samples presented are a few microns in size, such as embedded particles, a single unique cell or thin layer. Our results show that the actual spatial resolution and contrast of FPA images were lower than spectral maps from the confocal microscope. The FPA microscope also produced measurements that lacked accuracy: size of sample features and peak intensity were inaccurately estimated. More surprisingly, the intensity of absorption peaks in the FPA images was lower than the intensity measured from the same sample with a confocal microscope. Our measurements underlined the complementarity of FPA and confocal microscopes. FPA can be used to quickly measure the overall composition of a sample and detect the distribution of its components, but may fail measuring the exact chemical composition of the small features and may not detect weak spectral differences between adjacent positions. The averaging effect of aperture-less systems not only affects image resolution but also lowers their spectral accuracy. Confocal microscopes are inherently slower but give a more accurate measurement of the local composition at the diffraction limit

    Isotopic and textural analysis of giant unmelted micrometeorites – identification of new material from intensely altered 16O-poor water-rich asteroids

    Get PDF
    Bulk oxygen isotope data has the potential to match extraterrestrial samples to parent body sources based on distinctive δ18O and Δ17O ratios. We analysed 10 giant (>500 μm) micrometeorites using combined micro-Computer Tomography (μCT) and O-isotope analysis to pair internal textures to inferred parent body groups. We identify three ordinary chondrite particles (L and LL groups), four from CR chondrites and the first micrometeorite from the enstatite chondrite (EH4) group. In addition, two micrometeorites are from hydrated carbonaceous chondrite parent bodies with 16O-poor isotopic compositions and plot above the terrestrial fractionation line. They experienced intense aqueous alteration, contain pseudomorphic chondrules and are petrographically similar to the CM1/CR1 chondrites. These micrometeorites may be members of the newly established CY chondrites and/or derived from the enigmatic “Group 4” micrometeorite population, previously identified by Yada et al., 2005 [GCA, 69:5789-5804], Suavet et al., 2010 [EPSL, 293:313-320] (and others). One of our 16O-poor micrometeorite plots on the same isotopic trendline as the CO, CM and CY chondrites – “the CM mixing line” (with a slope of ∼0.7 and a δ17O intercept of -4.23‰), this implies a close relationship and potentially a genetic link to these hydrated chondrites. If position along the CM mixing line reflects the amount of 16O-poor (heavy) water-ice accreted onto the parent body at formation, then the CY chondrites and these 16O-poor micrometeorites must have accreted at least as much water-ice as CM chondrites but potentially more. In addition, thermal metamorphism could have played a role in further raising the bulk O-isotope compositions through the preferential loss of isotopically light water during phyllosilicate dehydration. The study of micrometeorites provides insights into asteroid belt diversity through the discovery of material not currently sampled by larger meteorites, perhaps as a result of atmospheric entry biases preventing the survival of large blocks of friable hydrated material

    GIADA microbalance measurements on board Rosetta: submicrometer- to micrometer-sized dust particle flux in the coma of comet 67P/Churyumov-Gerasimenko

    Get PDF
    Context. From August 2014 to September 2016, Rosetta escorted comet 67P/Churyumov-Gerasimenko (67P) during its journey around the Sun. One of the aims of Rosetta was to characterize cometary activity and the consequent formation of dust flux structures in cometary comae. Aims: We characterize and quantify the submicrometer- to micrometer-sized dust flux that may be shaped in privileged directions within the coma of 67P inbound to and outbound from perihelion. Methods: The in situ dust-measuring instrument GIADA, part of the Rosetta/ESA payload, consisted of three subsystems, one of which was the Micro Balance Subsystem (MBS), composed of five quartz crystal microbalances. From May 2014 to September 2016, MBS measured the submicrometer- to micrometer-sized deposited dust mass every 5 min. Results: We characterized the submicrometer- to micrometer-sized dust mass flux in the coma of 67P. The anti-sunward and the radial direction are preferred, and the flux is higher in the anti-sunward direction. The measured cumulative dust mass in the anti-sunward direction is 2.38 ± 0.04 × 10-7 kg, and in the radial direction, it is 1.18 ± 0.02 × 10-7 kg. We explain the anti-sunward dust flux as the effect of nonuniform gas emission between the night- and dayside of the nucleus, which acts in combination with the solar radiation pressure. We compared the cumulated dust mass of particles ≤5 μm with particles ≥100 μm. The retrieved ratio of ≈2% implies a differential size distribution index of ≈-3.0, which confirms that particles of size ≥0.1 mm dominate the dust coma cross-section of 67P during the entire orbit. Conclusions: Submicrometer- to micrometer-sized dust mass flux measurements were made for the first time from the arising of cometary activity until its extinction. They indicate that these particles do not provide a substantial optical scattering in the coma of 67P with respect to the scattering caused by millimeter-sized particles. In addition, MBS data reveal that the measured dust flux is highly anisotropic: anti-sunward plus radial

    X-ray computed tomography: Morphological and porosity characterization of giant Antarctic micrometeorites

    No full text
    Giant micrometeorites (MMs; 400–2000 µm) are exceedingly rare and scientifically valuable. Three-dimensional nondestructive characterization by X-ray computed tomography (X-CT) provides information on the petrography and thus petrogenesis of MMs and serves as a guide to maximize subsequent multi-analytical studies on such precious planetary materials. Here, we discuss the results obtained by X-CT on 22 giant MMs and the classification based on their 3-D density contrast images. Scoriaceous and unmelted MMs have distinct porosity ranges (10–40 vol% versus 0–25 vol%, respectively). We observe a porosity variation inside scoriaceous MMs, which allows their atmospheric entry flight history to be resolved. For the first time, spinning entry is explicitly demonstrated for four partially melted MMs. Furthermore, we are able to resolve the thermal gradient in a single particle, based on porosity variation (seen as a progressive increase in pore abundance and size with higher peak temperatures). Moreover, we explore parent body alteration through the 3-D analysis of pores distribution, showing that shock fabrics are either absent or weakly developed in our data set. Finally, owing to the detection of pseudomorphic chondrules, we estimate that the intensively aqueously altered C1 or CI-like material could represent 18% of the MM flux at this size fraction (400–1000 µm)

    A Multi-Technique Analysis of the Paris Meteorite to Characterize its Organic Content "In Situ", Within its Mineral Matrix

    No full text
    International audienceThis study is a multi-technique investigation of the Paris chondrite. It combines visible and IR spectroscopies, TOF-SIMS, Raman and micro-PIXE analyses directly applied on a millimetric meteorite fragment, without any chemical extraction
    corecore