2,004 research outputs found

    Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model

    Get PDF
    A numerical analysis of surface plasmon dispersion, propagation, and localization on smooth lossy films is presented. Particular attention is given to determining wavelength-dependent behavior of thin Ag slab waveguides embedded in a symmetric SiO2 environment. Rather than considering Ag as a damped free electron gas, the metal is defined by the experimentally determined optical constants of Johnson and Christy and Palik. As in free electron gas models, analytic dispersion results indicate a splitting of plasmon modes—corresponding to symmetric and antisymmetric field distributions—as film thickness is decreased below 50 nm. However, unlike free electron gas models, the surface plasmon wave vector remains finite at resonance with the antisymmetric-field plasmon converging to a pure photon mode for very thin films. In addition, allowed excitation modes are found to exist between the bound and radiative branches of the dispersion curve. The propagation characteristics of all modes are determined, and for thin films (depending upon electric field symmetry), propagation distances range from microns to centimeters in the near infrared. Propagation distances are correlated with both the field decay (skin depth) and energy density distribution in the metal and surrounding dielectric. While the energy density of most long-range surface plasmons exhibits a broad spatial extent with limited confinement in the waveguide, it is found that high-field confinement does not necessarily limit propagation. In fact, enhanced propagation is observed for silver films at ultraviolet wavelengths despite strong field localization in the metal. The surface plasmon characteristics described in this paper provide a numerical springboard for engineering nanoscale metal plasmon waveguides, and the results may provide a new avenue for integrated optoelectronic applications

    Separation of bacterial spores from flowing water in macro-scale cavities by ultrasonic standing waves

    Full text link
    The separation of micron-sized bacterial spores (Bacillus cereus) from a steady flow of water through the use of ultrasonic standing waves is demonstrated. An ultrasonic resonator with cross-section of 0.0254 m x 0.0254 m has been designed with a flow inlet and outlet for a water stream that ensures laminar flow conditions into and out of the resonator section of the flow tube. A 0.01905-m diameter PZT-4, nominal 2-MHz transducer is used to generate ultrasonic standing waves in the resonator. The acoustic resonator is 0.0356 m from transducer face to the opposite reflector wall with the acoustic field in a direction orthogonal to the water flow direction. At fixed frequency excitation, spores are concentrated at the stable locations of the acoustic radiation force and trapped in the resonator region. The effect of the transducer voltage and frequency on the efficiency of spore capture in the resonator has been investigated. Successful separation of B. cereus spores from water with typical volume flow rates of 40-250 ml/min has been achieved with 15% efficiency in a single pass at 40 ml/min.Comment: 11 pages, 6 figure

    Negative Refraction at Visible Frequencies

    Get PDF
    Nanofabricated photonic materials offer opportunities for crafting the propagation and dispersion of light in matter. We demonstrate an experimental realization of a two-dimensional negative-index material in the blue-green region of the visible spectrum, substantiated by direct geometric visualization of negative refraction. Negative indices were achieved with the use of an ultrathin Au-Si_3N_4-Ag waveguide sustaining a surface plasmon polariton mode with antiparallel group and phase velocities. All-angle negative refraction was observed at the interface between this bimetal waveguide and a conventional Ag-Si_3N_4-Ag slot waveguide. The results may enable the development of practical negative-index optical designs in the visible regime

    Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared

    Get PDF
    Broadly tunable photonic crystals in the near- to mid-infrared region could find use in spectroscopy, non-invasive medical diagnosis, chemical and biological sensing, and military applications, but so far have not been widely realized. We report the fabrication and characterization of three-dimensional tunable photonic crystals composed of polymer nanolattices with an octahedron unit-cell geometry. These photonic crystals exhibit a strong peak in reflection in the mid-infrared that shifts substantially and reversibly with application of compressive uniaxial strain. A strain of ∼40% results in a 2.2 μm wavelength shift in the pseudo-stop band, from 7.3 μm for the as-fabricated nanolattice to 5.1 μm when strained. We found a linear relationship between the overall compressive strain in the photonic crystal and the resulting stopband shift, with a ∼50 nm blueshift in the reflection peak position per percent increase in strain. These results suggest that architected nanolattices can serve as efficient three-dimensional mechanically tunable photonic crystals, providing a foundation for new opto-mechanical components and devices across infrared and possibly visible frequencies

    Critical Casimir force in 4^4He films: confirmation of finite-size scaling

    Full text link
    We present new capacitance measurements of critical Casimir force-induced thinning of 4^4He films near the superfluid/normal transition, focused on the region below TλT_{\lambda} where the effect is the greatest. 4^4He films of 238, 285, and 340 \AA thickness are adsorbed on N-doped silicon substrates with roughness ≈8A˚\approx 8 {\AA}. The Casimir force scaling function ϑ\vartheta , deduced from the thinning of these three films, collapses onto a single universal curve, attaining a minimum ϑ=−1.30±0.03\vartheta = -1.30 \pm 0.03 at x=td1/ν=−9.7±0.8A˚1/νx=td^{1/\nu}=-9.7\pm 0.8 {\AA}^{1/\nu}. The collapse confirms the finite-size scaling origin of the dip in the film thickness. Separately, we also confirm the presence down to 2.13K2.13 K of the Goldstone/surface fluctuation force, which makes the superfluid film ∼2A˚\sim 2 {\AA} thinner than the normal film.Comment: 4 pages, 3 figures, submitted to PR

    Active plasmonic devices and optical metamaterials

    Get PDF
    We studied active near-infrared metamaterials based on phase transition of vanadium oxide thin films, asymmetrically coupled split-ring resonators for narrowing resonance line-widths , field effect modulation of plasmon propagation and 3D single layer, plasmonic negative-index metamaterials

    Motion of Isolated bodies

    Get PDF
    It is shown that sufficiently smooth initial data for the Einstein-dust or the Einstein-Maxwell-dust equations with non-negative density of compact support develop into solutions representing isolated bodies in the sense that the matter field has spatially compact support and is embedded in an exterior vacuum solution

    Conjugate (solid/fluid) computational fluid dynamics analysis of the space shuttle solid rocket motor nozzle/case and case field joints

    Get PDF
    Three-dimensional, conjugate (solid/fluid) heat transfer analyses of new designs of the Solid Rocket Motor (SRM) nozzle/case and case field joints are described. The main focus was to predict the consequences of multiple rips (or debonds) in the ambient cure adhesive packed between the nozzle/case joint surfaces and the bond line between the mating field joint surfaces. The models calculate the transient temperature responses of the various materials neighboring postulated flow/leakpaths into, past, and out from the nozzle/case primary O-ring cavity and case field capture O-ring cavity. These results were used to assess if the design was failsafe (i.e., no potential O-ring erosion) and reusable (i.e., no excessive steel temperatures). The models are adaptions and extensions of the general purpose PHOENICS fluid dynamics code. A non-orthogonal coordinate system was employed and 11,592 control cells for the nozzle/case and 20,088 for the case field joints are used with non-uniform distribution. Physical properties of both fluid and solids are temperature dependent. A number of parametric studies were run for both joints with results showing temperature limits for reuse for the steel case on the nozzle joint being exceeded while the steel case temperatures for the field joint were not. O-ring temperatures for the nozzle joint predicted erosion while for the field joint they did not

    Performance of the OraQuick HCV Rapid Antibody Test for Screening Exposed Patients in a Hepatitis C Outbreak Investigation

    Get PDF
    During a nosocomial hepatitis C outbreak, emergency public clinics employed the OraQuick HCV rapid antibody test on site, and all results were verified by a standard enzyme immunoassay (EIA). Of 1,157 persons, 1,149 (99.3%) exhibited concordant results between the two tests (16 positive, 1,133 negative). The sensitivity, specificity, positive predictive value, and negative predictive value were 94.1%, 99.5%, 72.7%, and 99.9%, respectively. OraQuick performed well as a screening test during an outbreak investigation and could be integrated into future hepatitis C virus (HCV) outbreak testing algorithms
    • …
    corecore