20 research outputs found

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Effect of Metal Layer Support Structures on the Catalytic Activity of NiFe(oxy)hydroxide (LDH) for the OER in Alkaline Media

    Get PDF
    Photoelectrochemical (PEC) cells promise to combine the benefits of photovoltaics and electrolysis in one device. They consist of a photoabsorber functionalized with an electrocatalyst to harvest faradaic currents under reduced overpotentials. To protect the absorber from the harsh reaction conditions, a protective buffer layer (e. g. TiO₂) is added between absorber and catalyst. In this work, we investigate the influence of the catalyst support systems Ti/TiOₓ and Ti/TiOₓ/M (M=Au, Ni, Fe) on the overall activity and stability of nickel and iron mixed layered double hydroxides for the alkaline oxygen evolution reaction (OER). The catalyst performance on the bare Ti/TiOₓ substrate is very poor, but the incorporation of a metallic interlayer leads to two orders of magnitude higher OER current densities. While a similar effect has been observed for M=gold supported systems, we show that the same effect can be achieved with M=nickel/iron, already contained in the catalyst. This proprietary metal interlayer promises a cheap OER performance increase for PEC cells protected with titania buffer layers. Detailed XPS show an improved transformation of the starting catalyst material into the highly active (oxy)hydroxide phase, when using metallic interlayers. From these experiments a pure conductivity enhancement was excluded as possible explanation, but instead an additional change in the local atomic and electronic structure at the metal‐support and metal‐catalyst interfaces is proposed

    Addressing the needs for improving classical biological control programs in the USA

    No full text
    For years, the development of classical biological has proven to be the most cost-effective and environmentally safe management tool for invasive species. Despite this, in the United States there are a number of political, regulatory and institutional challenges associated with the discovery stage, pre-release phase, and post-release monitoring that have restricted the full potential and the long-term success of many classical biological control programs. Among these needs, we provide recommendations for improved prioritization of specific projects, funding concerns, source countries issues, benefits sharing of biological control agents, shipping live agents, regulatory requirements and procedures, and engagement with the environmental community. We believe these recommendations and potential solutions will significantly improve the future effectiveness of classical biological control programs for the management of invasive species within the United States
    corecore