194 research outputs found
Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics
Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach
Modeling uncertainties in EEG microstates: analysis of real and imagined motor movements using probabilistic clustering-driven training of probabilistic neural networks
Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analogue to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses
Machine learning-based lifetime breast cancer risk reclassification compared with the BOADICEA model: impact on screening recommendations
BACKGROUND: The clinical utility of machine-learning (ML) algorithms for breast cancer risk prediction and screening practices is unknown. We compared classification of lifetime breast cancer risk based on ML and the BOADICEA model. We explored the differences in risk classification and their clinical impact on screening practices. METHODS: We used three different ML algorithms and the BOADICEA model to estimate lifetime breast cancer risk in a sample of 112,587 individuals from 2481 families from the Oncogenetic Unit, Geneva University Hospitals. Performance of algorithms was evaluated using the area under the receiver operating characteristic (AU-ROC) curve. Risk reclassification was compared for 36,146 breast cancer-free women of ages 20-80. The impact on recommendations for mammography surveillance was based on the Swiss Surveillance Protocol. RESULTS: The predictive accuracy of ML-based algorithms (0.843 </= AU-ROC </= 0.889) was superior to BOADICEA (AU-ROC = 0.639) and reclassified 35.3% of women in different risk categories. The largest reclassification (20.8%) was observed in women characterised as 'near population' risk by BOADICEA. Reclassification had the largest impact on screening practices of women younger than 50. CONCLUSION: ML-based reclassification of lifetime breast cancer risk occurred in approximately one in three women. Reclassification is important for younger women because it impacts clinical decision- making for the initiation of screening
Cascades and Cognitive State: Focused Attention Incurs Subcritical Dynamics
The analysis of neuronal avalanches supports the hypothesis that the human cortex operates with critical neural dynamics. Here, we investigate the relationship between cascades of activity in electroencephalogram data, cognitive state, and reaction time in humans using a multimodal approach. We recruited 18 healthy volunteers for the acquisition of simultaneous electroencephalogram and functional magnetic resonance imaging during both rest and during a visuomotor cognitive task. We compared distributions of electroencephalogram-derived cascades to reference power laws for task and rest conditions. We then explored the large-scale spatial correspondence of these cascades in the simultaneously acquired functional magnetic resonance imaging data. Furthermore, we investigated whether individual variability in reaction times is associated with the amount of deviation from power law form. We found that while resting state cascades are associated with approximate power law form, the task state is associated with subcritical dynamics. Furthermore, we found that electroencephalogram cascades are related to blood oxygen level-dependent activation, predominantly in sensorimotor brain regions. Finally, we found that decreased reaction times during the task condition are associated with increased proximity to power law form of cascade distributions. These findings suggest that the resting state is associated with near-critical dynamics, in which a high dynamic range and a large repertoire of brain states may be advantageous. In contrast, a focused cognitive task induces subcritical dynamics, which is associated with a lower dynamic range, which in turn may reduce elements of interference affecting task performance
Structural Brain Changes in EarlyâOnset Alzheimer's Disease Subjects Using the LONI Pipeline Environment
BACKGROUND AND PURPOSEThis study investigates 36 subjects aged 55â65 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to expand our knowledge of earlyâonset (EO) Alzheimer's Disease (EOâAD) using neuroimaging biomarkers.METHODSNine of the subjects had EOâAD, and 27 had EO mild cognitive impairment (EOâMCI). The structural ADNI data were parcellated using BrainParser, and the 15 most discriminating neuroimaging markers between the two cohorts were extracted using the Global Shape Analysis (GSA) Pipeline workflow. Then the Local Shape Analysis (LSA) Pipeline workflow was used to conduct local (perâvertex) postâhoc statistical analyses of the shape differences based on the participantsâ diagnoses (EOâMCI+EOâAD). Tensorâbased Morphometry (TBM) and multivariate regression models were used to identify the significance of the structural brain differences based on the participantsâ diagnoses.RESULTSThe significant betweenâgroup regional differences using GSA were found in 15 neuroimaging markers. The results of the LSA analysis workflow were based on the subject diagnosis, age, years of education, apolipoprotein E (Δ4), MiniâMental State Examination, visiting times, and logical memory as regressors. All the variables had significant effects on the regional shape measures. Some of these effects survived the false discovery rate (FDR) correction. Similarly, the TBM analysis showed significant effects on the Jacobian displacement vector fields, but these effects were reduced after FDR correction.CONCLUSIONSThese results may explain some of the differences between EOâAD and EOâMCI, and some of the characteristics of the EO cognitive impairment subjects.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113121/1/jon12252.pd
Gender-specific aspects of oncological diseases: focus on stomach cancer and colorectal cancer
With each passing day, medicine strives to become more personalized, centered directly on the patient. A significant aspect of this dynamic involves the consideration of patients' gender, which influences their physiology, the pathogenesis of developing diseases, and their response to treatment.
Historically, most research has been conducted on male cells, male mice, and men, with women of childbearing age often excluded from studies for their safety. It was assumed that female cells were identical to male cells, leading medical research to be predominantly focused on male physiology. However, this approach was fundamentally flawed, as individuals of different sexes differ in terms of epidemiology, pathogenesis, clinical manifestations, disease progression, and responses to treatment. Knowledge of these gender-specific characteristics can aid clinicians in their patient management.
This literature review aims to examine the peculiarities of cancer progression in men and women, specifically in the cases of stomach and colorectal cancer
The Five Factor Model of personality and evaluation of drug consumption risk
The problem of evaluating an individual's risk of drug consumption and misuse
is highly important. An online survey methodology was employed to collect data
including Big Five personality traits (NEO-FFI-R), impulsivity (BIS-11),
sensation seeking (ImpSS), and demographic information. The data set contained
information on the consumption of 18 central nervous system psychoactive drugs.
Correlation analysis demonstrated the existence of groups of drugs with
strongly correlated consumption patterns. Three correlation pleiades were
identified, named by the central drug in the pleiade: ecstasy, heroin, and
benzodiazepines pleiades. An exhaustive search was performed to select the most
effective subset of input features and data mining methods to classify users
and non-users for each drug and pleiad. A number of classification methods were
employed (decision tree, random forest, -nearest neighbors, linear
discriminant analysis, Gaussian mixture, probability density function
estimation, logistic regression and na{\"i}ve Bayes) and the most effective
classifier was selected for each drug. The quality of classification was
surprisingly high with sensitivity and specificity (evaluated by leave-one-out
cross-validation) being greater than 70\% for almost all classification tasks.
The best results with sensitivity and specificity being greater than 75\% were
achieved for cannabis, crack, ecstasy, legal highs, LSD, and volatile substance
abuse (VSA).Comment: Significantly extended report with 67 pages, 27 tables, 21 figure
- âŠ