51 research outputs found

    Advanced electron cyclotron heating and current drive experiments on the stellarator Wendelstein 7-X

    Get PDF
    During the first operational phase (OP 1.1) of Wendelstein 7-X (W7-X) electron cyclotron resonance heating (ECRH) was the exclusive heating method and provided plasma start-up, wall conditioning, heating and current drive. Six gyrotrons were commissioned for OP1.1 and used in parallel for plasma operation with a power of up to 4.3 MW. During standard X2-heating the spatially localized power deposition with high power density allowed controlling the radial profiles of the electron temperature and the rotational transform. Even though W7-X was not fully equipped with first wall tiles and operated with a graphite limiter instead of a divertor, electron densities of n e > 3·1019 m-3 could be achieved at electron temperatures of several keV and ion temperatures above 2 keV. These plasma parameters allowed the first demonstration of a multipath O2-heating scenario, which is envisaged for safe operation near the X-cutoff-density of 1.2·1020 m-3 after full commissioning of the ECRH system in the next operation phase OP1.2

    Towards a 1.5 MW, 140 GHz gyrotron for the upgraded ECRH system at W7-X

    Get PDF
    For the required upgrades of the Electron Cyclotron Resonance Heating system at the stellarator Wendelstein 7-X, the development of a 1.5 MW 140 GHz Continuous Wave (CW) prototype gyrotron has started. KIT has been responsible to deliver the scientific design of the tube (i.e. the electron optics design and the RF design), with contributions from NKUA and IPP. The prototype gyrotron has been ordered at the industrial partner, Thales, France, and is expected to be delivered in 2021. In parallel, a short-pulse pre-prototype gyrotron has been developed at KIT, to provide the means for a first experimental validation of the scientific design in ms pulses, prior to the construction of the CW prototype. This paper reports on the status of the 1.5 MW CW gyrotron development, focusing on the scientific design and its numerical and experimental validation

    Effects of Resonant Magnetic Perturbation on Particle Transport in LHD

    Get PDF
    In this study, the effects of resonant magnetic perturbation (RMP) on particle transport are investigated in Large Helical device (LHD). The magnetic configuration is selected to be the outwardly shifted configuration, for which the magnetic axis position (Rax) is 3.9 m. At Rax = 3.9 m, the main plasma is surrounded by a thick ergodic layer, with width of about 30% of the plasma minor radius. The perturbation mode m/n = 1/1, where m and n are poloidal and toroidal mode numbers, is applied. The resonant layer is around the last closed flux surface. With RMP, a region in which both the connection and Kolmogorov lengths are finite and the magnetic field is ergodic forms; this region extends inside the main plasma. In the low-collisionality regime, where νh* 1), a clear difference in particle transport is found. A clear difference in turbulence is also observed, suggesting that turbulence plays a significant role in particle transport in the high-collisionality regime both with and without RMP

    First experiments on plasma production using field-aligned ICRF fast wave antennas in the large helical device

    Get PDF
    The results of the first experimental series to produce a plasma using the ion cyclotron range of frequency (ICRF) in the large helical device (LHD) within the minority scenario developed at Uragan-2M (U-2M) are presented. The motivation of this study is to provide plasma creation in conditions when an electron cyclotron resonance heating start-up is not possible, and in this way widen the operational frame of helical machines. The major constraint of the experiments is the low RF power to reduce the possibility of arcing. No dangerous voltage increase at the radio-frequency (RF) system elements and no arcing has been detected. As a result, a low plasma density is obtained and the antenna-plasma coupling is not optimal. However, such plasmas are sufficient to be used as targets for further neutral beam injection (NBI) heating. This will open possibilities to explore new regimes of operation at LHD and Wendelstein 7-X (W7-X) stellarator. The successful RF plasma production in LHD in this experimental series stimulates the planning of further studies of ICRF plasma production aimed at increasing plasma density and temperature within the ICRF minority scenario as well as investigating the plasma prolongation by NBI heating

    Confinement degradation and plasma loss induced by strong sawtooth crashes at W7-X

    Get PDF
    Sawtooth-like crashes were observed during electron cyclotron current drive experiments for strikeline controls at the optimised superconducting stellarator Wendelstein 7-X (W7-X). The majority of the crashes did not have a relevant impact on plasma performance. However, a limited number of events, characterised by a large plasma volume affected by the instability, have been related to a strong deterioration performance and even to the premature termination of the plasma. The hot plasma core expelled during these sawtooth crashes can reach the plasma edge, where plasma surface interaction can occur and impurities can be released. The x-ray tomography shows a strong radiation increase starting from the edge and moving towards the inner plasma regions. This results in the cooling down and shrinking of the plasma, which eventually leads to a poor coupling of the ECRH to the electrons, that can in turn result in a plasma loss. A relation between the size and amplitude of the sawtooth crashes and the impurity increase is reported.EC/H2020/633053/EU/Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium/Eurato

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F

    Overview of transport and MHD stability study: focusing on the impact of magnetic field topology in the Large Helical Device

    Get PDF
    The progress in the understanding of the physics and the concurrent parameter extension in the large helical device since the last IAEA-FEC, in 2012 (Kaneko O et al 2013 Nucl. Fusion 53 095024), is reviewed. Plasma with high ion and electron temperatures (Ti(0) ~ Te(0) ~ 6 keV) with simultaneous ion and electron internal transport barriers is obtained by controlling recycling and heating deposition. A sign flip of the nondiffusive term of impurity/momentum transport (residual stress and convection flow) is observed, which is associated with the formation of a transport barrier. The impact of the topology of three-dimensional magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum, particle/impurity transport and magnetohydrodynamic stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1 × 1019 m−3 and with high electron and ion temperatures (Ti(0) ~ Te(0) ~ 2 keV), resulting in 3.36 GJ of input energy, is achieved
    corecore