120 research outputs found

    Forage-Animal Production Research Unit (FAPRU): Establishment of a New USDA-ARS Research Location

    Get PDF
    Forages are vital to the success of grazing livestock production systems. Forages provide a low cost source of nutrients for animal production (Barnes & Nelson 2003; Ball et al., 1996). Limited fundamental (i.e., genomic, proteomic, metabolomic) research on the effects of environment and management on plant quality and production and the effects of plant metabolites (i.e., nutrients, anti-quality factors, nutraceuticals) on animal performance has hindered our ability to improve the productivity of forage-based enterprises. There is insufficient information for reliable prediction of animal performance in response to plant metabolites. To address these issues, USDA-ARS established FAPRU (Forage-Animal Production Research Unit) in 2003 at U Kentucky, Lexington. Its mission is to improve the productivity, profitability, competitiveness and sustainability of forage-based enterprises through improved understanding of the fundamental biological processes that occur at the animal-plant interface

    Research Notes : United States : The effect of the narrow-leaf gene in a segregating population

    Get PDF
    A single recessive gene designated Jn by Bernard and Weiss (1972) controls the inheritance of the lanceolate trifoliolate in soybean. They state that the narrow-leaf condition is associated with a high number of four-seeded pods, which they attributed to a pleiotropic effect of the Jn gene. No yield differences have been found between narrow and normal leaf types using isolines

    Increased Abundance of the Common Raven Within the Ranges of Greater and Gunnison Sage-grouse: Influence of Anthropogenic Subsidies and Fire

    Get PDF
    The common raven (Corvus corax; raven) is native to North America and has increased in abundance, especially throughout western North America, during the last century. Human subsidies have facilitated raven dispersal into less suitable habitats and enabled these populations to maintain higher annual survival and reproduction. Concomitantly, overabundant raven populations are impacting other native at-risk species such as the greater sage-grouse (Centrocercus urophasianus) and potentially the Gunnison sage-grouse (C. minimus). Using Breeding Bird Survey data from 1995–2014, we evaluated raven count data to quantitatively describe changes in abundance and expansion into sagebrush (Artemisia spp.) ecosystems, specifically sage-grouse habitat. We focused our analyses on the 7 sage-grouse management zones (MZs) delineated across 11 western U.S. states and 2 Canadian provinces. We assessed the effects of land cover and anthropogenic disturbance on instantaneous growth rate (r) or carrying capacity (K) of ravens. Abundance of ravens in western and southeastern MZs was greater than northeastern MZs within the greater sage-grouse range. While raven abundance was lower in MZ I and II (Alberta, Canada; Dakotas, Montana, and northwestern Colorado, USA; Saskatchewan, Canada; and Wyoming, USA), raven expansion and percent increase were equivalent or greater than all other MZs. High abundance in MZ VII indicated Gunnison sage-grouse have been exposed to increased raven populations for several decades. Areas with greater electric power transmission line density had higher r; higher K was positively related to proportion of urban land cover within 25 km and burned area within 3 km and negatively related to greater distance from landfills and proportion of forest land cover within 15 km. Ravens have capitalized on human subsidies to increase abundance and expand into sagebrush ecosystems that did not historically support high raven populations. As such, managers are now faced with a new dilemma of reducing populations of a native species to benefit other native sagebrush obligate species

    A Novel Technique to Improve Capture Success of Common Ravens

    Get PDF
    Traditional trapping techniques for common ravens (Corvus corax; raven) require significant effort, often produce low capture rates, and cannot be used in some situations. We designed a 3-m noose pole to secure ravens from nocturnal roost locations while using a strobe spotlight to temporarily disorient them. We collected measures of trapping efficiency and contrasted them with padded leghold traps also used in the study. We effectively implemented our noose pole method in July and August of 2018, 2019, and 2020 in the Baker and Cow Lakes sage-grouse (Centrocercus urophasianus) Priority Areas of Conservation in eastern Oregon, USA, which yielded trapping efficiency of 0.48 trap-hours/raven (37 total captured ravens). Our trapping efficiency using leghold traps during the same summer months was 76.42 trap-hours/raven (3 total captured ravens). Our new trapping method constitutes an inexpensive and simple way to safely trap ravens at accessible communal roosts and merits further refinement to increase utility and capitalize on the vulnerability of ravens to capture at night

    EFFECTS OF MANAGEMENT PRACTICES ON GRASSLAND BIRDS: HORNED LARK

    Get PDF
    Information on the habitat requirements and effects of habitat management on grassland birds were summarized from information in more than 4,000 published and unpublished papers. A range map is provided to indicate the relative densities of the species in North America, based on Breeding Bird Survey (BBS) data. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America, including areas that could not be mapped using BBS data. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below

    Using Microbial Community Interactions within Plant Microbiomes to Advance an Evergreen Agricultural Revolution

    Get PDF
    Innovative plant breeding and technology transfer fostered the Green Revolution (GR), which transformed agriculture worldwide by increasing grain yields in developing countries. The GR temporarily alleviated world hunger, but also reduced biodiversity, nutrient cycling, and carbon (C) sequestration that agricultural lands can provide. Meanwhile, economic disparity and food insecurity within and among countries continues. Subsequent agricultural advances, focused on objectives such as increasing crop yields or reducing the risk of a specific pest, have failed to meet food demands at the local scale or to restore lost ecosystem services. An increasing human population, climate change, growing per capita food and energy demands, and reduced ecosystem potential to provide agriculturally relevant services have created an unrelenting need for improved crop production practices. Meeting this need in a sustainable fashion will require interdisciplinary approaches that integrate plant and microbial ecology with efforts to advance crop production while mitigating effects of a changing climate. Metagenomic advances are revealing microbial dynamics that can simultaneously improve crop production and soil restoration while enhancing crop resistance to environmental change. Restoring microbial diversity to contemporary agroecosystems could establish ecosystem services while reducing production costs for agricultural producers. Our framework for examining plant-microbial interactions at multiple scales, modeling outcomes to broadly explore potential impacts, and interacting with extension and training networks to transfer microbial based agricultural technologies across socioeconomic scales, offers an integrated strategy for advancing agroecosystem sustainability while minimizing potential for the kind of negative ecological and socioeconomic feedbacks that have resulted from many widely adopted agricultural technologies

    Induction heating coupler

    Get PDF
    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardely beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to magnetic flux passing between the two ends of the pole piece

    Induction heating coupler and annealer

    Get PDF
    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having- two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardly beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to a magnetic flux passing between the two ends of the pole piece

    Substrates of the \u3cem\u3eArabidopsis thaliana\u3c/em\u3e Protein Isoaspartyl Methyltransferase 1 Identified Using Phage Display and Biopanning

    Get PDF
    The role of protein isoaspartyl methyltransferase (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of PIMT target proteins in plant seeds, where the enzyme is highly active and proteome long-lived, has been hindered by large amounts of isoaspartate-containing storage proteins. Mature seed phage display libraries circumvented this problem. Inclusion of the PIMT co-substrate, S-adenosylmethionine (AdoMet), during panning permitted PIMT to retain aged phage in greater numbers than controls lacking co-substrate or when PIMT protein binding was poisoned with S-adenosyl homocysteine. After four rounds, phage titer plateaued in AdoMet-containing pans, whereas titer declined in both controls. This strategy identified 17 in-frame PIMT target proteins, including a cupin-family protein similar to those identified previously using on-blot methylation. All recovered phage had at least one susceptible Asp or Asn residue. Five targets were recovered independently. Two in-frame targets were produced in Escherichia coli as recombinant proteins and shown by on-blot methylation to acquire isoAsp, becoming a PIMT target. Both gained isoAsp rapidly in solution upon thermal insult. Mutant analysis of plants deficient in any of three in-frame PIMT targets resulted in demonstrable phenotypes. An over-representation of clones encoding proteins involved in protein production suggests that the translational apparatus comprises a subgroup for which PIMT-mediated repair is vital for orthodox seed longevity. Impaired PIMT activity would hinder protein function in these targets, possibly resulting in poor seed performance
    • …
    corecore