59 research outputs found

    The Impact of Endonasal Endoscopic Sinus Surgery on Patients with Chronic Pulmonary Diseases

    Get PDF
    Introduction: The impact of endoscopic sinus surgery on bronchial asthma has been studied by several groups. According to the latest studies, patients with chronic obstructive pulmonary disease (COPD) seem to have frequent symptoms of chronic rhinosinusitis. Our study compares the impact of endoscopic sinus surgery on both the upper and lower airways of patients with bronchial asthma as well as those with COPD. Methods: This study includes 43 patients (bronchial asthma, n = 32, COPD, n = 11) undergoing surgical treatment for chronic rhinosinusitis at the ENT-Department, University of Homburg (Homburg, Germany). To assess the effect of sinus surgery, the Sino-Nasal Outcome Test 20 German Adapted Version (SNOT-20 GAV) and St. George’s Respiratory Questionnaire (SGRQ) were used both pre- and postoperatively. Results: Both SNOT-20 (p < 0.001) and SGRQ (p = 0.021) scores improved significantly after sinus surgery. The postoperative improvement in bronchial asthma and COPD was similar in both groups, indicating no difference of the diseases in regards to postoperative symptom improvement. There was no difference indicated in SNOT-20 GAV or SGRQ when grouping patients by polyps, aspirin (ASS) intolerance, allergies, eosinophilia or previous surgery. Conclusions: The treatment of chronic rhinosinusitis by sinus surgery may help to improve the therapy outcome of patients with bronchial asthma as well as patients with COPD

    Analysis and evaluation of environmental tobacco smoke exposure as a risk factor for chronic cough

    Get PDF
    Exposure to environmental tobacco smoke (ETS) and active tobacco smoking has been shown to increase symptoms of bronchial asthma such as bronchoconstriction but effects on other respiratory symptoms remain poorly assessed. Current levels of exposure to tobacco smoke may also be responsible for the development of chronic cough in both children and adults. The present study analyses the effects of tobacco smoke exposure as potential causes of chronic cough. A panel of PubMed-based searches was performed relating the symptom of cough to various forms of tobacco smoke exposure. It was found that especially prenatal and postnatal exposures to ETS have an important influence on children's respiratory health including the symptom of cough. These effects may be prevented if children and pregnant women are protected from exposure to ETS. Whereas the total number of studies adressing the relationship between cough and ETS exposure is relatively small, the present study demonstrated that there is a critical amout of data pointing to a causative role of environmental ETS exposure for the respiratory symptom of cough. Since research efforts have only targeted this effect to a minor extent, future epidemiological and experimental studies are needed to further unravel the relation between ETS and cough

    Allergic airway inflammation induces upregulation of the expression of IL-23R by macrophages and not in CD3 + T cells and CD11c+F4/80- dendritic cells of the lung

    Get PDF
    Interleukin 23 and the interleukin 23 receptor (IL-23-IL23R) are described as the major enhancing factors for Interleukin 17 (IL-17) in allergic airway infammation. IL-17 is considered to induce neutrophilic infammation in the lung, which is often observed in severe, steroid-resistant asthma-phenotypes. For that reason, understanding of IL-23 and IL-17 axis is very important for future therapy strategies, targeting neutrophil pathway of bronchial asthma. This study aimed to investigate the distribution and expression of IL-23R under physiological and infammatory conditions. Therefore, a house dust mite (HDM) model of allergic airway infammation was performed by treating mice with HDM intranasally. Immunofuorescence staining with panel of antibodies was performed in lung tissues to examine the macrophage, dendritic cell, and T cell subpopulations. The allergic airway infammation was quantifed by histopathological analysis, ELISA measurements, and airway function. HDM-treated mice exhibited a signifcant allergic airway infammation including higher amounts of NE+ cells in lung parenchyma. We found only a small amount of IL-23R positives, out of total CD3+T cells, and no upregulation in HDMtreated animals. In contrast, the populations of F4/80+ macrophages and CD11c+F4/80− dendritic cells (DCs) with IL-23R expression were found to be higher. But HDM treatment leads to a signifcant increase of IL-23R+ macrophages, only. IL23R was expressed by every examined macrophage subpopulation, whereas only Mϕ1 and hybrids between Mϕ1 and Mϕ2 phenotype and not Mϕ2 were found to upregulate IL-23R. Co-localization of IL-23R and IL-17 was only observed in F4/80+ macrophages, suggesting F4/80+ macrophages express IL-23R along with IL-17 in lung tissue. The study revealed that macrophages involving the IL-23 and IL-17 pathway may provide a potential interesting therapeutic target in neutrophilic bronchial asthma

    Label driven Knowledge Distillation for Federated Learning with non-IID Data

    Full text link
    In real-world applications, Federated Learning (FL) meets two challenges: (1) scalability, especially when applied to massive IoT networks; and (2) how to be robust against an environment with heterogeneous data. Realizing the first problem, we aim to design a novel FL framework named Full-stack FL (F2L). More specifically, F2L utilizes a hierarchical network architecture, making extending the FL network accessible without reconstructing the whole network system. Moreover, leveraging the advantages of hierarchical network design, we propose a new label-driven knowledge distillation (LKD) technique at the global server to address the second problem. As opposed to current knowledge distillation techniques, LKD is capable of training a student model, which consists of good knowledge from all teachers' models. Therefore, our proposed algorithm can effectively extract the knowledge of the regions' data distribution (i.e., the regional aggregated models) to reduce the divergence between clients' models when operating under the FL system with non-independent identically distributed data. Extensive experiment results reveal that: (i) our F2L method can significantly improve the overall FL efficiency in all global distillations, and (ii) F2L rapidly achieves convergence as global distillation stages occur instead of increasing on each communication cycle.Comment: 28 pages, 5 figures, 10 table

    A Survey on Intelligent Internet of Things: Applications, Security, Privacy, and Future Directions

    Get PDF
    peer reviewedThe rapid advances in the Internet of Things (IoT) have promoted a revolution in communication technology and offered various customer services. Artificial intelligence (AI) techniques have been exploited to facilitate IoT operations and maximize their potential in modern application scenarios. In particular, the convergence of IoT and AI has led to a new networking paradigm called Intelligent IoT (IIoT), which has the potential to significantly transform businesses and industrial domains. This paper presents a comprehensive survey of IIoT by investigating its significant applications in mobile networks, as well as its associated security and privacy issues. Specifically, we explore and discuss the roles of IIoT in a wide range of key application domains, from smart healthcare and smart cities to smart transportation and smart industries. Through such extensive discussions, we investigate important security issues in IIoT networks, where network attacks, confidentiality, integrity, and intrusion are analyzed, along with a discussion of potential countermeasures. Privacy issues in IIoT networks were also surveyed and discussed, including data, location, and model privacy leakage. Finally, we outline several key challenges and highlight potential research directions in this important area

    A mock circulation loop to test extracorporeal CO2 elimination setups

    Get PDF
    Background: Extracorporeal carbon dioxide removal (ECCO2R) is a promising yet limited researched therapy for hypercapnic respiratory failure in acute respiratory distress syndrome and exacerbated chronic obstructive pulmonary disease. Herein, we describe a new mock circuit that enables experimental ECCO2R research without animal models. In a second step, we use this model to investigate three experimental scenarios of ECCO2R: (I) the influence of hemoglobin concentration on CO2 removal. (II) a potentially portable ECCO2R that uses air instead of oxygen, (III) a low-flow ECCO2R that achieves effective CO2 clearance by recirculation and acidification of the limited blood volume of a small dual lumen cannula (such as a dialysis catheter). Results: With the presented ECCO2R mock, CO2 removal rates comparable to previous studies were obtained. The mock works with either fresh porcine blood or diluted expired human packed red blood cells. However, fresh porcine blood was preferred because of better handling and availability. In the second step of this work, hemoglobin concentration was identified as an important factor for CO2 removal. In the second scenario, an air-driven ECCO2R setup showed only a slightly lower CO2 wash-out than the same setup with pure oxygen as sweep gas. In the last scenario, the low-flow ECCO2R, the blood flow at the test membrane lung was successfully raised with a recirculation channel without the need to increase cannula flow. Low recirculation ratios resulted in increased efficiency, while high recirculation ratios caused slightly reduced CO2 removal rates. Acidification of the CO2 depleted blood in the recirculation channel caused an increase in CO2 removal rate. Conclusions: We demonstrate a simple and cost effective, yet powerful, “in-vitro” ECCO2R model that can be used as an alternative to animal experiments for many research scenarios. Moreover, in our approach parameters such as hemoglobin level can be modified more easily than in animal models

    A Novel Mock Circuit to Test Full-Flow Extracorporeal Membrane Oxygenation

    Get PDF
    Extracorporeal membrane oxygenation (ECMO) has become an important therapeutic approach in the COVID-19 pandemic. The development and research in this field strongly relies on animal models; however, efforts are being made to find alternatives. In this work, we present a new mock circuit for ECMO that allows measurements of the oxygen transfer rate of a membrane lung at full ECMO blood flow. The mock utilizes a large reservoir of heparinized porcine blood to measure the oxygen transfer rate of the membrane lung in a single passage. The oxygen transfer rate is calculated from blood flow, hemoglobin value, venous saturation, and post-membrane arterial oxygen pressure. Before the next measuring sequence, the blood is regenerated to a venous condition with a sweep gas of nitrogen and carbon dioxide. The presented mock was applied to investigate the effect of a recirculation loop on the oxygen transfer rate of an ECMO setup. The recirculation loop caused a significant increase in post-membrane arterial oxygen pressure (paO2 ). The effect was strongest for the highest recirculation flow. This was attributed to a smaller boundary layer on gas fibers due to the increased blood velocity. However, the increase in paO2 did not translate to significant increases in the oxygen transfer rate because of the minor significance of physically dissolved oxygen for gas transfer. In conclusion, our results regarding a new ECMO mock setup demonstrate that recirculation loops can improve ECMO performance, but not enough to be clinically relevant
    • 

    corecore