33 research outputs found

    Molecular Profiling of Phagocytic Immune Cells in Anopheles gambiae Reveals Integral Roles for Hemocytes in Mosquito Innate Immunity

    Get PDF
    The innate immune response is highly conserved across all eukaryotes and has been studied in great detail in several model organisms. Hemocytes, the primary immune cell population in mosquitoes, are important components of the mosquito innate immune response, yet critical aspects of their biology have remained uncharacterized. Using a novel method of enrichment, we isolated phagocytic granulocytes and quantified their proteomes by mass spectrometry. The data demonstrate that phagocytosis, blood-feeding, and Plasmodium falciparuminfection promote dramatic shifts in the proteomic profiles of An. gambiaegranulocyte populations. Of interest, large numbers of immune proteins were induced in response to blood feeding alone, suggesting that granulocytes have an integral role in priming the mosquito immune system for pathogen challenge. In addition, we identify several granulocyte proteins with putative roles as membrane receptors, cell signaling, or immune components that when silenced, have either positive or negative effects on malaria parasite survival. Integrating existing hemocyte transcriptional profiles, we also compare differences in hemocyte transcript and protein expression to provide new insight into hemocyte gene regulation and discuss the potential that post-transcriptional regulation may be an important component of hemocyte gene expression. These data represent a significant advancement in mosquito hemocyte biology, providing the first comprehensive proteomic profiling of mosquito phagocytic granulocytes during homeostasis blood-feeding, and pathogen challenge. Together, these findings extend current knowledge to further illustrate the importance of hemocytes in shaping mosquito innate immunity and their principal role in defining malaria parasite survival in the mosquito host

    An antibody against an Anopheles albimanus midgut myosin reduces Plasmodium berghei oocyst development

    Get PDF
    Statistical analysis GLMM (data corresponding to Fig. 1d and Table 1). (DOCX 39 kb

    Structure–activity relationship of ipglycermide binding to phosphoglycerate mutases

    Get PDF
    Catalysis of human phosphoglycerate mutase is dependent on a 2,3-bisphosphoglycerate cofactor (dPGM), whereas the nonhomologous isozyme in many parasitic species is cofactor independent (iPGM). This mechanistic and phylogenetic diversity offers an opportunity for selective pharmacologic targeting of glycolysis in disease-causing organisms. We previously discovered ipglycermide, a potent inhibitor of iPGM, from a large combinatorial cyclic peptide library. To fully delineate the ipglycermide pharmacophore, herein we construct a detailed structure–activity relationship using 280 substituted ipglycermide analogs. Binding affinities of these analogs to immobilized Caenorhabditis elegans iPGM, measured as fold enrichment relative to the index residue by deep sequencing of an mRNA display library, illuminated the significance of each amino acid to the pharmacophore. Using cocrystal structures and binding kinetics, we show that the high affinity of ipglycermide for iPGM orthologs, from Brugia malayi, Onchocerca volvulus, Dirofilaria immitis, and Escherichia coli, is achieved by a codependence between (1) the off-rate mediated by the macrocycle Cys14 thiolate coordination to an active-site Zn2+ in the iPGM phosphatase domain and (2) shape complementarity surrounding the macrocyclic core at the phosphotransferase–phosphatase domain interface. Our results show that the high-affinity binding of ipglycermide to iPGMs freezes these structurally dynamic enzymes into an inactive, stable complex

    A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome

    Get PDF
    Endoplasmic reticulum (ER) dysregulation is associated with pathologies including neurodegenerative, muscular, and diabetic conditions. Depletion of ER calcium can lead to the loss of resident proteins in a process termed exodosis. To identify compounds that attenuate the redistribution of ER proteins under pathological conditions, we performed a quantitative high-throughput screen using the Gaussia luciferase (GLuc)-secreted ER calcium modulated protein (SERCaMP) assay, which monitors secretion of ER-resident proteins triggered by calcium depletion. We identify several clinically used drugs, including bromocriptine, and further characterize them using assays to measure effects on ER calcium, ER stress, and ER exodosis. Bromocriptine elicits protective effects in cell-based models of exodosis as well as in vivo models of stroke and diabetes. Bromocriptine analogs with reduced dopamine receptor activity retain similar efficacy in stabilizing the ER proteome, indicating a non-canonical mechanism of action. This study describes a strategic approach to identify small-molecule drugs capable of improving ER proteostasis in human disease conditions.Peer reviewe

    The Selection of a Hepatocyte Cell Line Susceptible to Plasmodium falciparum Sporozoite Invasion That Is Associated With Expression of Glypican-3

    Get PDF
    In vitro studies of liver stage (LS) development of the human malaria parasite Plasmodium falciparum are technically challenging; therefore, fundamental questions about hepatocyte receptors for invasion that can be targeted to prevent infection remain unanswered. To identify novel receptors and to further understand human hepatocyte susceptibility to P. falciparum sporozoite invasion, we created an optimized in vitro system by mimicking in vivo liver conditions and using the subcloned HC-04.J7 cell line that supports mean infection rates of 3–5% and early development of P. falciparum exoerythrocytic forms—a 3- to 5-fold improvement on current in vitro hepatocarcinoma models for P. falciparum invasion. We juxtaposed this invasion-susceptible cell line with an invasion-resistant cell line (HepG2) and performed comparative proteomics and RNA-seq analyses to identify host cell surface molecules and pathways important for sporozoite invasion of host cells. We identified and investigated a hepatocyte cell surface heparan sulfate proteoglycan, glypican-3, as a putative mediator of sporozoite invasion. We also noted the involvement of pathways that implicate the importance of the metabolic state of the hepatocyte in supporting LS development. Our study highlights important features of hepatocyte biology, and specifically the potential role of glypican-3, in mediating P. falciparum sporozoite invasion. Additionally, it establishes a simple in vitro system to study the LS with improved invasion efficiency. This work paves the way for the greater malaria and liver biology communities to explore fundamental questions of hepatocyte-pathogen interactions and extend the system to other human malaria parasite species, like P. vivax

    Induced Resistance Combined with RNA Interference Attenuates the Counteradaptation of the Western Flower Thrips

    No full text
    The western flower thrips, Frankliniella occidentalis Pergande, is an invasive pest that damages agricultural and horticultural crops. The induction of plant defenses and RNA interference (RNAi) technology are potent pest control strategies. This study investigated whether the anti-adaptive ability of F. occidentalis to jasmonic acid (JA)- and methyl jasmonate (MeJA)-induced defenses in kidney bean plants was attenuated after glutathione S-transferase (GST) gene knockdown. The expression of four GSTs in thrips fed JA- and MeJA-induced leaves was analyzed, and FoGSTd1 and FoGSTs1 were upregulated. Exogenous JA- and MeJA-induced defenses led to increases in defensive secondary metabolites (tannins, alkaloids, total phenols, flavonoids, and lignin) in leaves. Metabolome analysis indicated that the JA-induced treatment of leaves led to significant upregulation of defensive metabolites. The activity of GSTs increased in second-instar thrips larvae fed JA- and MeJA-induced leaves. Co-silencing with RNAi simultaneously knocked down FoGSTd1 and FoGSTs1 transcripts and GST activity, and the area damaged by second-instar larvae feeding on JA- and MeJA-induced leaves decreased by 62.22% and 55.24%, respectively. The pupation rate of second-instar larvae also decreased by 39.68% and 39.89%, respectively. Thus, RNAi downregulation of FoGSTd1 and FoGSTs1 reduced the anti-adaptive ability of F. occidentalis to JA- or MeJA-induced defenses in kidney bean plants

    Separation and identification of compounds in Adinandra nitida by comprehensive two-dimensional liquid chromatography coupled to atmospheric pressure chemical ionization source ion trap tandem mass spectrometry

    No full text
    A comprehensive two-dimensional liquid chromatographic (2D-LC) separation system based on the combination of a CN column and a Merck Chromolith Flash reversed-phase column was developed for the separation of components in Adinandra nitida, one type of traditional Chinese medicine (TCM). The two dimensions were connected by a ten-port, dual-position valve controlled automatically by software written in-house. The effluents were detected by both ultraviolet and atmospheric pressure chemical ionization source ion trap tandem mass spectrometry (MS). The calculated peak capacity of the 2D-LC-MS/MS system was above 1240. More than 57 components were resolved in the methanol extract from Adinandra nitida leaves, and five of these were identified based on their relative retention times, molecular weights and MS/MS spectra

    Molecular Profiling of Phagocytic Immune Cells in Anopheles gambiae Reveals Integral Roles for Hemocytes in Mosquito Innate Immunity

    No full text
    The innate immune response is highly conserved across all eukaryotes and has been studied in great detail in several model organisms. Hemocytes, the primary immune cell population in mosquitoes, are important components of the mosquito innate immune response, yet critical aspects of their biology have remained uncharacterized. Using a novel method of enrichment, we isolated phagocytic granulocytes and quantified their proteomes by mass spectrometry. The data demonstrate that phagocytosis, blood-feeding, and Plasmodium falciparuminfection promote dramatic shifts in the proteomic profiles of An. gambiaegranulocyte populations. Of interest, large numbers of immune proteins were induced in response to blood feeding alone, suggesting that granulocytes have an integral role in priming the mosquito immune system for pathogen challenge. In addition, we identify several granulocyte proteins with putative roles as membrane receptors, cell signaling, or immune components that when silenced, have either positive or negative effects on malaria parasite survival. Integrating existing hemocyte transcriptional profiles, we also compare differences in hemocyte transcript and protein expression to provide new insight into hemocyte gene regulation and discuss the potential that post-transcriptional regulation may be an important component of hemocyte gene expression. These data represent a significant advancement in mosquito hemocyte biology, providing the first comprehensive proteomic profiling of mosquito phagocytic granulocytes during homeostasis blood-feeding, and pathogen challenge. Together, these findings extend current knowledge to further illustrate the importance of hemocytes in shaping mosquito innate immunity and their principal role in defining malaria parasite survival in the mosquito host.Published as Smith, Ryan C., Jonas G. King, Dingyin Tao, Oana A. Zeleznik, Clara Brando, Gerhard G. Thallinger, and Rhoel R. Dinglasan. "Molecular profiling of phagocytic immune cells in Anopheles gambiae reveals integral roles for hemocytes in mosquito innate immunity." Molecular & Cellular Proteomics 15, no. 11 (2016): 3373-3387. doi: 10.1074/mcp.M116.060723</p

    Plasmodium female gamete surface HSP90 is a key determinant for fertilization

    No full text
    ABSTRACTPlasmodium fertilization, an essential step for the development of the malaria parasite in the mosquito, is a prime target for blocking pathogen transmission. Using phage peptide display screening, we identified MG1, a peptide that binds to male gametes and inhibits fertilization, presumably by competing with a female gamete ligand. Anti-MG1 antibodies bind to the female gamete surface and, by doing so, also inhibit fertilization. We determined that this antibody recognizes HSP90 on the surface of Plasmodium female gametes. Our findings establish Plasmodium HSP90 as a prime target for the development of a transmission-blocking vaccine.IMPORTANCEMalaria kills over half a million people every year and this number has not decreased in recent years. The development of new tools to combat this disease is urgently needed. In this article, we report the identification of a key molecule—HSP90—on the surface of the parasite’s female gamete that is required for fertilization to occur and for the completion of the parasite cycle in the mosquito. HSP90 is a promising candidate for the development of a transmission-blocking vaccine
    corecore