65 research outputs found

    Mitochondrial Changes in Ageing Caenorhabditis elegans – What Do We Learn from Superoxide Dismutase Knockouts?

    Get PDF
    One of the most popular damage accumulation theories of ageing is the mitochondrial free radical theory of ageing (mFRTA). The mFRTA proposes that ageing is due to the accumulation of unrepaired oxidative damage, in particular damage to mitochondrial DNA (mtDNA). Within the mFRTA, the “vicious cycle” theory further proposes that reactive oxygen species (ROS) promote mtDNA mutations, which then lead to a further increase in ROS production. Recently, data have been published on Caenorhabditis elegans mutants deficient in one or both forms of mitochondrial superoxide dismutase (SOD). Surprisingly, even double mutants, lacking both mitochondrial forms of SOD, show no reduction in lifespan. This has been interpreted as evidence against the mFRTA because it is assumed that these mutants suffer from significantly elevated oxidative damage to their mitochondria. Here, using a novel mtDNA damage assay in conjunction with related, well established damage and metabolic markers, we first investigate the age-dependent mitochondrial decline in a cohort of ageing wild-type nematodes, in particular testing the plausibility of the “vicious cycle” theory. We then apply the methods and insights gained from this investigation to a mutant strain for C. elegans that lacks both forms of mitochondrial SOD. While we show a clear age-dependent, linear increase in oxidative damage in WT nematodes, we find no evidence for autocatalytic damage amplification as proposed by the “vicious cycle” theory. Comparing the SOD mutants with wild-type animals, we further show that oxidative damage levels in the mtDNA of SOD mutants are not significantly different from those in wild-type animals, i.e. even the total loss of mitochondrial SOD did not significantly increase oxidative damage to mtDNA. Possible reasons for this unexpected result and some implications for the mFRTA are discussed

    Grass strategies and grassland community responses to environmental drivers: a review

    Full text link

    Managing potato wart: a review of present research status and future perspective

    Get PDF

    Identification of key residues involved in adrenomedullin binding to the AM 1 receptor

    Get PDF
    BACKGROUND AND PURPOSE:Adrenomedullin (AM) is a peptide hormone whose receptors are members of the class B GPCR family. They comprise a heteromer between the GPCR, the calcitonin receptor-like receptor and one of the receptor activity-modifying proteins 1-3. AM plays a significant role in angiogenesis and its antagonist fragment AM22-52 can inhibit blood vessel and tumour growth. The mechanism by which AM interacts with its receptors is unknown.EXPERIMENTAL APPROACH:We determined the AM22-52 binding epitope for the AM1 receptor extracellular domain using biophysical techniques, heteronuclear magnetic resonance spectroscopy and alanine scanning.KEY RESULTS:Chemical shift perturbation experiments located the main binding epitope for AM22-52 at the AM1 receptor to the C-terminal 8 amino acids. Isothermal titration calorimetry of AM22-52 alanine-substituted peptides indicated that Y52, G51 and I47 are essential for AM1 receptor binding and that K46 and P49 and R44 have a smaller role to play. Characterization of these peptides at the full-length AM receptors was assessed in Cos7 cells by cAMP assay. This confirmed the essential role of Y52, G51 and I47 in binding to the AM1 receptor, with their substitution resulting in ≥100-fold reduction in antagonist potency compared with AM22-52 . R44A, K46A, S48A and P49A AM22-52 decreased antagonist potency by approximately 10-fold.CONCLUSIONS AND IMPLICATIONS:This study localizes the main binding epitope of AM22-52 to its C-terminal amino acids and distinguishes essential residues involved in this binding. This will inform the development of improved AM receptor antagonists

    Agroecology: Agroecosystem diversification

    No full text

    Direct detection of N-H[...]N hydrogen bonds in biomolecules by NMR spectroscopy.

    No full text
    International audienceA nuclear magnetic resonance (NMR) experiment is described for the direct detection of N-H[...]N hydrogen bonds (H-bonds) in 15N isotope-labeled biomolecules. This quantitative HNN-COSY (correlation spectroscopy) experiment detects and quantifies electron-mediated scalar couplings across the H-bond (H-bond scalar couplings), which connect magnetically active (15)N nuclei of the H-bond donor and acceptor. Detectable H-bonds comprise the imino H-bonds in canonical Watson-Crick base pairs, many H-bonds in unusual nucleic acid base pairs and H-bonds between protein backbone or side-chain N-H donor and N acceptor moieties. Unlike other NMR observables, which provide only indirect evidence of the presence of H-bonds, the H-bond scalar couplings identify all partners of the H-bond, the donor, the donor proton and the acceptor in a single experiment. The size of the scalar couplings can be related to H-bond geometries and as a time average to H-bond dynamics. The time required to detect the H-bonds is typically less than 1 d at millimolar concentrations for samples of molecular weight < or = approximately 25 kDa. A C15N/13C-labeled potato spindle tuber viroid T1 RNA domain is used as an example to illustrate this procedure
    corecore