42,943 research outputs found

    Bibliometric cartography of information retrieval research by using co-word analysis

    Get PDF
    The aim of this study is to map the intellectual structure of the field of Information Retrieval (IR) during the period of 1987-1997. Co-word analysis was employed to reveal patterns and trends in the IR field by measuring the association strengths of terms representative of relevant publications or other texts produced in IR field. Data were collected from Science Citation Index (SCI) and Social Science Citation Index (SSCI) for the period of 1987-1997. In addition to the keywords added by the SCI and SSCI databases, other important keywords were extracted from titles and abstracts manually. These keywords were further standardized using vocabulary control tools. In order to trace the dynamic changes of the IR field, the whole 11-year period was further separated into two consecutive periods: 1987-1991 and 1992-1997. The results show that the IR field has some established research themes and it also changes rapidly to embrace new themes

    Molecular Dynamics Study of Bamboo-like Carbon Nanotube Nucleation

    Full text link
    MD simulations based on an empirical potential energy surface were used to study the nucleation of bamboo-like carbon nanotubes (BCNTs). The simulations reveal that inner walls of the bamboo structure start to nucleate at the junction between the outer nanotube wall and the catalyst particle. In agreement with experimental results, the simulations show that BCNTs nucleate at higher dissolved carbon concentrations (i.e., feedstock pressures) than those where non-bamboolike carbon nanotubes are nucleated

    Cusp-scaling behavior in fractal dimension of chaotic scattering

    Full text link
    A topological bifurcation in chaotic scattering is characterized by a sudden change in the topology of the infinite set of unstable periodic orbits embedded in the underlying chaotic invariant set. We uncover a scaling law for the fractal dimension of the chaotic set for such a bifurcation. Our analysis and numerical computations in both two- and three-degrees-of-freedom systems suggest a striking feature associated with these subtle bifurcations: the dimension typically exhibits a sharp, cusplike local minimum at the bifurcation.Comment: 4 pages, 4 figures, Revte

    Recurrent Coronal Jets Induced by Repetitively Accumulated Electric Currents

    Full text link
    Three extreme-ultraviolet (EUV) jets recurred in about one hour on 2010 September 17 in the following magnetic polarity of active region 11106. The EUV jets were observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The Helioseismic and Magnetic Imager (HMI) on board SDO measured the vector magnetic field, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The magnetic configuration before the jets is derived by the nonlinear force-free field (NLFFF) extrapolation. We derive that the jets are above a pair of parasitic magnetic bipoles which are continuously driven by photospheric diverging flows. The interaction drove the build up of electric currents that we indeed observed as elongated patterns at the photospheric level. For the first time, the high temporal cadence of HMI allows to follow the evolution of such small currents. In the jet region, we found that the integrated absolute current peaks repetitively in phase with the 171 A flux evolution. The current build up and its decay are both fast, about 10 minutes each, and the current maximum precedes the 171 A by also about 10 minutes. Then, HMI temporal cadence is marginally fast enough to detect such changes. The photospheric current pattern of the jets is found associated to the quasi-separatrix layers deduced from the magnetic extrapolation. From previous theoretical results, the observed diverging flows are expected to build continuously such currents. We conclude that magnetic reconnection occurs periodically, in the current layer created between the emerging bipoles and the large scale active region field. It induced the observed recurrent coronal jets and the decrease of the vertical electric current magnitude.Comment: 10 pages, 7 figures, accepted for publication in A&

    Single crystal growth and physical properties of SrFe2_{2}(As1x_{1-x}Px_{x})2_{2}

    Full text link
    We report a crystal growth and physical properties of SrFe2_{2}(As1x_{1-x}Px_{x})2_{2}. The single crystals for various xxs were grown by a self flux method. For x=0.35x = 0.35, TcT_c reaches the maximum value of 30\,K and the electrical resistivity ρ\rho(TT) shows TT-linear dependence. As xx increases, TcT_{c} decreases and ρ\rho(TT) changes to T2T^2-behavior, indicating a standard Fermi liquid. These results suggest that a magnetic quantum critical point exists around x=0.35x=0.35.Comment: 4 pages, 4 figures, accepted to Supplemental issue of the Journal of Physical Society of Japan (JPSJ

    Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity

    Get PDF
    We introduce a system with one or two amplified nonlinear sites ("hot spots", HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied at selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable or unstable when the nonlinearity includes the cubic loss or gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, while weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are considered too.Comment: Philosophical Transactions of the Royal Society A, in press (a special issue on "Localized structures in dissipative media"

    Structure – Property relationships for nanofluids

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Nanofluids refer to dilute liquid suspensions of nanoparticles in commonly used heat transfer liquids. They triggered much excitement since mid 1990s mainly owing to the claims of anomalous enhancement of thermal conductivity even at very low nanoparticle concentrations. There have been numerous attempts to interpret the mechanism(s) that drive the displayed enhancement. A long debate within the research community supported by experimental and theoretical evidence has highlighted the nanoparticle structuring as the dominant underlying mechanism. On the other hand the viscosity increase as a result of nanoparticle structuring raises concerns about their suitability for certain applications. This paper mainly discusses the structure – property relationship for nanofluids in microscopically static conditions
    corecore