43,282 research outputs found

    Modeling Magnetic Field Structure of a Solar Active Region Corona using Nonlinear Force-Free Fields in Spherical Geometry

    Full text link
    We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry using an analytical solution from Low and Lou. Several tests are run, ranging from idealized cases where exact vector field data are provided on all boundaries, to cases where noisy vector data are provided on only the lower boundary (approximating the solar problem). Analytical tests also show that the NLFFF code in the spherical geometry performs better than that in the Cartesian one when the field of view of the bottom boundary is large, say, 20∘×20∘20^\circ \times 20^\circ. Additionally, We apply the NLFFF model to an active region observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) both before and after an M8.7 flare. For each observation time, we initialize the models using potential field source surface (PFSS) extrapolations based on either a synoptic chart or a flux-dispersal model, and compare the resulting NLFFF models. The results show that NLFFF extrapolations using the flux-dispersal model as the boundary condition have slightly lower, therefore better, force-free and divergence-free metrics, and contain larger free magnetic energy. By comparing the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the Atmospheric Imaging Assembly (AIA) on board SDO, we find that the NLFFF performs better than the PFSS not only for the core field of the flare productive region, but also for large EUV loops higher than 50 Mm.Comment: 34 pages, 8 figures, accepted for publication in Ap

    The absolute radiometric calibration of the advanced very high resolution radiometer

    Get PDF
    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California

    Chromospheric Evaporation in an X1.0 Flare on 2014 March 29 Observed with IRIS and EIS

    Full text link
    Chromospheric evaporation refers to dynamic mass motions in flare loops as a result of rapid energy deposition in the chromosphere. These have been observed as blueshifts in X-ray and extreme-ultraviolet (EUV) spectral lines corresponding to upward motions at a few tens to a few hundreds of km/s. Past spectroscopic observations have also revealed a dominant stationary component, in addition to the blueshifted component, in emission lines formed at high temperatures (~10 MK). This is contradictory to evaporation models predicting predominant blueshifts in hot lines. The recently launched Interface Region Imaging Spectrograph (IRIS) provides high resolution imaging and spectroscopic observations that focus on the chromosphere and transition region in the UV passband. Using the new IRIS observations, combined with coordinated observations from the EUV Imaging Spectrometer, we study the chromospheric evaporation process from the upper chromosphere to corona during an X1.0 flare on 2014 March 29. We find evident evaporation signatures, characterized by Doppler shifts and line broadening, at two flare ribbons separating from each other, suggesting that chromospheric evaporation takes place in successively formed flaring loops throughout the flare. More importantly, we detect dominant blueshifts in the high temperature Fe XXI line (~10 MK), in agreement with theoretical predictions. We also find that, in this flare, gentle evaporation occurs at some locations in the rise phase of the flare, while explosive evaporation is detected at some other locations near the peak of the flare. There is a conversion from gentle to explosive evaporation as the flare evolves.Comment: ApJ in pres

    The absolute radiometric calibration of the advanced very high resolution radiometer

    Get PDF
    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4
    • …
    corecore