27,815 research outputs found
Association Between Air Pollution and Low Birth Weight: A Community-Based Study
The relationship between maternal exposure to air pollution during periods of pregnancy (entire and specific periods) and birth weight was investigated in a well-defined cohort. Between 1988 and 1991, all pregnant women living in four residential areas of Beijing were registered and followed from early pregnancy until delivery. Information on individual mothers and infants was collected. Daily air pollution data were obtained independently. The sample for analysis included 74,671 first-parity live births were gestational age 37-44 weeks. Multiple linear regression and logistic regression were used to estimate the effects of air pollution on birth weight and low birth weight (< 2,500 g), adjusting for gestational age, residence, year of birth, maternal age, and infant gender. There was a significant exposure-response relationship between maternal exposures to sulfur dioxide (SO2) and total suspended particles (TSP) during the third trimester of pregnancy and infant birth weight. The adjusted odds ratio for low birth weight was 1.11 (95% CI, 1.06-1.16) for each 100 micrograms/m3 increase in SO2 and 1.10 (95% CI, 1.05-1.14) for each 100 micrograms/m3 increase in TSP. The estimated reduction in birth weight was 7.3 g and 6.9 g for each 100 micrograms/m3 increase in SO2 and in TSP, respectively. The birth weight distribution of the high-exposure group was more skewed toward the left tail (i.e., with higher proportion of births < 2,500 g) than that of the low-exposure group. Although the effects of other unmeasured risk factors cannot be excluded with certainty, our data suggests that TSP and SO2, or a more complex pollution mixture associated with these pollutants, contribute to an excess risk of low birth weight in the Beijing population.National Institute of Environmental Health Sciences (ES05947, ES08337); National Institute of Child Health & Human Development (R01 HD32505); Department of Health and Human Services (MCJ-259501, HRSA 5 T32 PE10014
The Fermi surface of underdoped high-T_c superconducting cuprates
The coexistence of -flux state and d-wave RVB state is considered in
this paper within the slave boson approach. A critical value of doping
concentration is found, below which the coexisting -flux and
d-wave RVB state is favored in energy. The pseudo Fermi surface of spinons and
the physical electron spectral function are calculated. A clear Fermi-level
crossing is found along the (0,0) to (, ) direction, but no such
crossing is detected along the (, 0) to (, ) direction. Also, an
energy gap of d-wave symmetry appears at the Fermi level in our calculation.
The above results are in agreement with the angle-resolved photoemission
experiments which indicate at a d-wave pseudo-gap and a half-pocket-like Fermi
surface in underdoped cuprates.Comment: 18 pages RevTex, 6 figures in PS file
Modeling Magnetic Field Structure of a Solar Active Region Corona using Nonlinear Force-Free Fields in Spherical Geometry
We test a nonlinear force-free field (NLFFF) optimization code in spherical
geometry using an analytical solution from Low and Lou. Several tests are run,
ranging from idealized cases where exact vector field data are provided on all
boundaries, to cases where noisy vector data are provided on only the lower
boundary (approximating the solar problem). Analytical tests also show that the
NLFFF code in the spherical geometry performs better than that in the Cartesian
one when the field of view of the bottom boundary is large, say, . Additionally, We apply the NLFFF model to an active region
observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar
Dynamics Observatory (SDO) both before and after an M8.7 flare. For each
observation time, we initialize the models using potential field source surface
(PFSS) extrapolations based on either a synoptic chart or a flux-dispersal
model, and compare the resulting NLFFF models. The results show that NLFFF
extrapolations using the flux-dispersal model as the boundary condition have
slightly lower, therefore better, force-free and divergence-free metrics, and
contain larger free magnetic energy. By comparing the extrapolated magnetic
field lines with the extreme ultraviolet (EUV) observations by the Atmospheric
Imaging Assembly (AIA) on board SDO, we find that the NLFFF performs better
than the PFSS not only for the core field of the flare productive region, but
also for large EUV loops higher than 50 Mm.Comment: 34 pages, 8 figures, accepted for publication in Ap
- …