39,782 research outputs found
Existence results for mean field equations
Let be an annulus. We prove that the mean field equation
-\Delta\psi=\frac{e\sp{-\beta\psi}}{\int\sb{\Omega}e\sp{-\beta\psi}} admits
a solution with zero boundary for . This is a
supercritical case for the Moser-Trudinger inequality.Comment: Filling a gap in the argument and adding 2 referrence
Computational structure‐based drug design: Predicting target flexibility
The role of molecular modeling in drug design has experienced a significant revamp in the last decade. The increase in computational resources and molecular models, along with software developments, is finally introducing a competitive advantage in early phases of drug discovery. Medium and small companies with strong focus on computational chemistry are being created, some of them having introduced important leads in drug design pipelines. An important source for this success is the extraordinary development of faster and more efficient techniques for describing flexibility in three‐dimensional structural molecular modeling. At different levels, from docking techniques to atomistic molecular dynamics, conformational sampling between receptor and drug results in improved predictions, such as screening enrichment, discovery of transient cavities, etc. In this review article we perform an extensive analysis of these modeling techniques, dividing them into high and low throughput, and emphasizing in their application to drug design studies. We finalize the review with a section describing our Monte Carlo method, PELE, recently highlighted as an outstanding advance in an international blind competition and industrial benchmarks.We acknowledge the BSC-CRG-IRB Joint Research Program in Computational Biology. This work was supported by a grant
from the Spanish Government CTQ2016-79138-R.J.I. acknowledges support from SVP-2014-068797, awarded by the Spanish Government.Peer ReviewedPostprint (author's final draft
The observed by the BES Collaboration
In the framework of the meson decay model, the strong decays of the
and states are investigated. It is found that in
the presence of the initial state mass being 2.24 GeV, the total widths of the
and states are about 438 MeV and 125 MeV,
respectively. Also, when the initial state mass varies from 2220 to 2400 MeV,
the total width of the state varies from about 100 to 132
MeV, while the total width of the state varies from about
400 to 594 MeV. A comparison of the predicted widths and the experimental
result of GeV, the width of the
with a mass of GeV recently observed by the
BES Collaboration in the radiative decay , suggests that it would be very difficult to identify the
as the state, and the seams a
good candidate for the state.Comment: 14 pages, 3 figures, typos corrected, Accepted by Physical Review
Three realizations of quantum affine algebra
In this article we establish explicit isomorphisms between three realizations
of quantum twisted affine algebra : the Drinfeld ("current")
realization, the Chevalley realization and the so-called realization,
investigated by Faddeev, Reshetikhin and Takhtajan.Comment: 15 page
Charge and spin Hall effect in graphene with magnetic impurities
We point out the existence of finite charge and spin Hall conductivities of
graphene in the presence of a spin orbit interaction (SOI) and localized
magnetic impurities. The SOI in graphene results in different transverse forces
on the two spin channels yielding the spin Hall current. The magnetic
scatterers act as spin-dependent barriers, and in combination with the SOI
effect lead to a charge imbalance at the boundaries. As indicated here, the
charge and spin Hall effects should be observable in graphene by changing the
chemical potential close to the gap.Comment: 7 page
On the \phi(1020)f_0(980) S-wave scattering and the Y(2175) resonance
We have studied the \phi(1020)f_0(980) S-wave scattering at energies around
threshold employing chiral Lagrangians coupled to vector mesons through minimal
coupling. The interaction kernel is obtained by considering the f_0(980) as a
K\bar{K} bound state. The Y(2175) resonance is generated in this approach by
the self-interactions between the \phi(1020) and the f_0(980) resonances. We
are able to describe the e^+e^-\to \phi(1020)f_0(980) recent scattering data to
test experimentally our scattering amplitudes, concluding that the Y(2175)
resonance has a large \phi(1020)f_0(980) meson-meson component.Comment: 20 pages, 8 figure
A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data
A great improvement to the insight on brain function that we can get from
fMRI data can come from effective connectivity analysis, in which the flow of
information between even remote brain regions is inferred by the parameters of
a predictive dynamical model. As opposed to biologically inspired models, some
techniques as Granger causality (GC) are purely data-driven and rely on
statistical prediction and temporal precedence. While powerful and widely
applicable, this approach could suffer from two main limitations when applied
to BOLD fMRI data: confounding effect of hemodynamic response function (HRF)
and conditioning to a large number of variables in presence of short time
series. For task-related fMRI, neural population dynamics can be captured by
modeling signal dynamics with explicit exogenous inputs; for resting-state fMRI
on the other hand, the absence of explicit inputs makes this task more
difficult, unless relying on some specific prior physiological hypothesis. In
order to overcome these issues and to allow a more general approach, here we
present a simple and novel blind-deconvolution technique for BOLD-fMRI signal.
Coming to the second limitation, a fully multivariate conditioning with short
and noisy data leads to computational problems due to overfitting. Furthermore,
conceptual issues arise in presence of redundancy. We thus apply partial
conditioning to a limited subset of variables in the framework of information
theory, as recently proposed. Mixing these two improvements we compare the
differences between BOLD and deconvolved BOLD level effective networks and draw
some conclusions
A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks
Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally,
conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002
and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140
- …