32,668 research outputs found
Charmonium properties in hot quenched lattice QCD
We study the properties of charmonium states at finite temperature in
quenched QCD on large and fine isotropic lattices. We perform a detailed
analysis of charmonium correlation and spectral functions both below and above
. Our analysis suggests that both S wave states ( and )
and P wave states ( and ) disappear already at about . The charm diffusion coefficient is estimated through the Kubo formula and
found to be compatible with zero below and approximately at
.Comment: 32 pages, 19 figures, typo corrected, discussions on isotropic vs
anisotropic lattices expanded, published versio
Scanning ultrafast electron microscopy
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability
Heavy Quark diffusion from lattice QCD spectral functions
We analyze the low frequency part of charmonium spectral functions on large
lattices close to the continuum limit in the temperature region as well as for . We present evidence for the
existence of a transport peak above and its absence below . The
heavy quark diffusion constant is then estimated using the Kubo formula. As
part of the calculation we also determine the temperature dependence of the
signature for the charmonium bound state in the spectral function and discuss
the fate of charmonium states in the hot medium.Comment: 4 pages, Proceedings for Quark Matter 2011 Conference, May 23-28,
2011, Annecy, Franc
Molecular Dynamics Study of Bamboo-like Carbon Nanotube Nucleation
MD simulations based on an empirical potential energy surface were used to
study the nucleation of bamboo-like carbon nanotubes (BCNTs). The simulations
reveal that inner walls of the bamboo structure start to nucleate at the
junction between the outer nanotube wall and the catalyst particle. In
agreement with experimental results, the simulations show that BCNTs nucleate
at higher dissolved carbon concentrations (i.e., feedstock pressures) than
those where non-bamboolike carbon nanotubes are nucleated
Asymptotic Bound on Binary Self-Orthogonal Codes
We present two constructions for binary self-orthogonal codes. It turns out
that our constructions yield a constructive bound on binary self-orthogonal
codes. In particular, when the information rate R=1/2, by our constructive
lower bound, the relative minimum distance \delta\approx 0.0595 (for GV bound,
\delta\approx 0.110). Moreover, we have proved that the binary self-orthogonal
codes asymptotically achieve the Gilbert-Varshamov bound.Comment: 4 pages 1 figur
Reciprocatory magnetic reconnection in a coronal bright point
Coronal bright points (CBPs) are small-scale and long-duration brightenings
in the lower solar corona. They are often explained in terms of magnetic
reconnection. We aim to study the sub-structures of a CBP and clarify the
relationship among the brightenings of different patches inside the CBP. The
event was observed by the X-ray Telescope (XRT) aboard the Hinode spacecraft on
2009 August 2223. The CBP showed repetitive brightenings (or CBP flashes).
During each of the two successive CBP flashes, i.e., weak and strong flashes
which are separated by 2 hr, the XRT images revealed that the CBP was
composed of two chambers, i.e., patches A and B. During the weak flash, patch A
brightened first, and patch B brightened 2 min later. During the
transition, the right leg of a large-scale coronal loop drifted from the right
side of the CBP to the left side. During the strong flash, patch B brightened
first, and patch A brightened 2 min later. During the transition, the
right leg of the large-scale coronal loop drifted from the left side of the CBP
to the right side. In each flash, the rapid change of the connectivity of the
large-scale coronal loop is strongly suggestive of the interchange
reconnection. For the first time we found reciprocatory reconnection in the
CBP, i.e., reconnected loops in the outflow region of the first reconnection
process serve as the inflow of the second reconnection process.Comment: 13 pages, 8 figure
- …