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Abstract. We analyze the low frequency part of charmonium spectral functions on

large lattices close to the continuum limit in the temperature region 1.5 . T/Tc . 3 as

well as for T ≃ 0.75Tc. We present evidence for the existence of a transport peak above

Tc and its absence below Tc. The heavy quark diffusion constant is then estimated

using the Kubo formula. As part of the calculation we also determine the temperature

dependence of the signature for the charmonium bound state in the spectral function

and discuss the fate of charmonium states in the hot medium.

1. Introduction

Experimentally a substantial elliptic follow of heavy quarks has been observed at

RHIC [1]. Various phenomenogical model studies suggest heavy quark diffusion

coefficient D . 1/T to accomodate data (see e.g. Ref. [2]). Theoretically the heavy

quark diffusion coefficient D has been calculated by perturbative QCD in both leading

and next-to-leading order as well as from AdS/CFT correspondence. At αs ≈ 0.2,

leading order pQCD calculation gives 2πTD ≈ 71.2 [2] while next-to-leading order

calculation gives 2πTD ≈ 8.4 [3]. In the strong coupling limit 2πTD = 1 is obtained

from AdS/CFT correspondence [4]. Under such a circumstance a non-pertubative

computation of heavy quark diffusion is needed‡.

Through Kubo formula, the heavy quark diffusion constant D relates to the vector

spectral function as D = π
3χ00

limω→0

∑3
i=1

σii

V
(ω,T )

ω
, where χ00 is the quark number

susceptibility and σii
V (ω, T ) is a mesonic spectral function in the vector channel. In

the non-interacting case σii
V (ω) has a ωδ(ω) term [6] and consequently gives an infinity

diffusion constant, while in the interacting case ωδ(ω) will be smeared into a Breit-

Wigner form [7] and leads to a finite diffusion. The fate of quarkonia states at finite

‡ Here we focus on extracting diffusion coefficient from mesonic spectral functions, other ways can be

found in Ref. [5].
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temperature, which was suggested as a useful probe of QCD medium properties [8], can

also be signaled by the deformation of spectral functions.

The mesonic spectral function is not directly accessible through lattice QCD

simulations and can be obtained from the inversion of the following equation

GH(τ, T ) =

∫ ∞

0

dω σH(ω, T ) K(τ, T, ω), K(τ, T, ω) =
cosh(ω(τ − 1

2T
))

sinh( ω
2T
)

. (1)

where the two-point correlation function GH(τ, T ) =
∑

~x〈 JH(τ, ~x) J
†
H(0,~0) 〉T can

be computed on the lattice. JH = q̄(τ, ~x)ΓHq(τ, ~x) is a local mesonic operator and

ΓH = γi, γ5 for vector (Vii) and pseudo-scalar (PS) channels, respectively. The

temperature T is related to the Euclidean temporal extent aNτ by T = 1/(aNτ ), where

a is the lattice spacing. We measured charmonium correlation functions on very fine

(a = 0.01fm) quenched lattices with a relatively large size of 1283 × 96, 1283 × 48,

1283×32 and 1283×24 at 0.73 Tc, 1.46 Tc, 2.20 Tc and 2.93 Tc, respectively. The lattice

parameters and part of the results have been reported in Ref. [9].

2. Default model dependences of MEM results

The Maximum Entropy Method (MEM) is used to extract spectral functions from

correlators through Eq. (1) [10]. The input parameter of MEM is a default model

(DM), which includes the knowledge about the spectral function, e.g. σ(ω) ≥ 0. The

output spectral functions from MEM are reliable only if they show a small dependence

on the input DMs. Thus it is very important to study the default model depedence of

the output spectral functions.

From the left panel of Fig. 1 we see that the default model dependence of vector

spectral functions at 0.73Tc is very small. The location of the ground state peak is very

close to the physical J/ψ mass. The width of the peak is too wide to be interpreted

as the physical width of J/ψ. We found no evidence for the existence of a transport

peak at this temperature. In the right panel of Fig. 1 we show (G(τT ) − Grec(τT )) =
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Figure 1. Left: Default model dependences of vector spectral functions at 0.73 Tc.

Right: differences of G(τT ) from Grec(τT ) as a function of τT . Grec(τT ) is the

reconstructed correlation function from the spectral function at 0.73Tc [9].
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∫
dωK(τT )(σ(ω, T )−σ(ω, 0.73Tc)) as a function of τT . The flatness ofG−Grec at 1.46Tc

indicates some small changes in the bound states and the rising feature with increasing

distances at higher temperatures indicates (σ(ω, T )− σ(ω, 0.73Tc)) is negative in some

low frequency region. To look into the detailed change of the spectral function from

below to above Tc, it is crucial to investigate the spectral function itself.

In Fig. 2 we show the default model dependence of vector spectral functions at

T > Tc. We first vary the low frequency (transport) part of the spectral function in the

default model, where plots A1) and A2) show the low frequency and high frequency parts

of the spectral function, respectively. A small default model dependence is observed. We

then vary the resonance part of the spectral function in the default model, where plots

B1) and B2) show the high frequency and low frequency parts of the spectral function,

respectively. In particular, the first peak location in “DM 2” corresponds to the peak

location of the spectral function at 0.73Tc. We observed that the ground state peak

location in general shifts to higher energy region at 1.46Tc and becomes flat at higher

temperatures. Transport peaks have relatively strong default model dependences as

seen in plot B2).

3. Conclusion

We summarize current uncertainties of transport peaks in the left panel of Fig. 4 and

resulting heavy quark diffusion coefficients in the right panel. We found that 2πTD

at 1.46 Tc is close to unity and is slightly increasing with temperature. We also

performed the default model dependence study in the PS channel and together with

the uncertainties of vector spectral function are shown in Fig. 3, which suggests the

dissociation of both J/ψ and ηc at T > 1.46 Tc.
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Figure 2. Default model dependences of vector spectral functions at T > Tc. The

dotted and corresponding solid lines are for the different default models and output

spectral functions, respectively.

Figure 3. Uncertainties of output spectral functions in PS (left) and Vii (right)

channels at all available temperatures. The shaded areas are errors of output spectral

functions from Jackknife and the solid lines inside the shaded areas are mean values

of spectral functions.
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Figure 4. Transport peaks at T > Tc and resulting diffusion coefficients.
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