14,777 research outputs found

    Superconducting gap symmetry of Ba0.6K0.4Fe2As2 studied by angle-resolved photoemission spectroscopy

    Full text link
    We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets including a newly discovered outer electron pocket at the M point. The SC gap on this pocket is nearly isotropic and its magnitude is comparable (Δ\Delta ∼\sim 11 meV) to that of the inner electron and hole pockets (∼\sim12 meV), although it is substantially larger than that of the outer hole pocket (∼\sim6 meV). The Fermi-surface dependence of the SC gap value is basically consistent with Δ\Delta(kk) = Δ\Delta0_0coskxk_xcoskyk_y formula expected for the extended s-wave symmetry. The observed finite deviation from the simple formula suggests the importance of multi-orbital effects.Comment: 4 pages, 3 figures, 1 tabl

    Integration of embryo–endosperm interaction into a holistic and dynamic picture of seed development using a rice mutant with notched-belly kernels

    Get PDF
    Interaction between the embryo and endosperm affects seed development, an essential process in yield formation in crops such as rice. Signals that mediate communication between embryo and endosperm are largely unknown. We used the notched-belly (NB) mutant with impaired communication between embryo and endosperm to investigate the effect of the embryo on developmental staging of the endosperm and signaling pathways in the embryo that regulate endosperm development. Hierachical clustering of mRNA datasets from embryo and endosperm samples collected during development in NB and a wild type showed a delaying effect of the embryo on the developmental transition of the endosperm by extension of the middle stage. K-means clustering further identified coexpression modules of gene sets specific to embryo and endosperm development. Combined gene expression and biochemical analysis showed that T6P–SnRK1, gibberellin and auxin signaling by the embryo regulate endosperm developmental transition. We propose a new seed developmental staging system for rice and identify the most detailed signature of rice grain formation to date. These will direct genetic strategies for rice yield improvement

    Symbolic Dynamics Analysis of the Lorenz Equations

    Full text link
    Recent progress of symbolic dynamics of one- and especially two-dimensional maps has enabled us to construct symbolic dynamics for systems of ordinary differential equations (ODEs). Numerical study under the guidance of symbolic dynamics is capable to yield global results on chaotic and periodic regimes in systems of dissipative ODEs which cannot be obtained neither by purely analytical means nor by numerical work alone. By constructing symbolic dynamics of 1D and 2D maps from the Poincare sections all unstable periodic orbits up to a given length at a fixed parameter set may be located and all stable periodic orbits up to a given length may be found in a wide parameter range. This knowledge, in turn, tells much about the nature of the chaotic limits. Applied to the Lorenz equations, this approach has led to a nomenclature, i.e., absolute periods and symbolic names, of stable and unstable periodic orbits for an autonomous system. Symmetry breakings and restorations as well as coexistence of different regimes are also analyzed by using symbolic dynamics.Comment: 35 pages, LaTeX, 13 Postscript figures, uses psfig.tex. The revision concerns a bug at the end of hlzfig12.ps which prevented the printing of the whole .ps file from page 2

    Thermodynamic properties of Ba1-xMxFe2As2 (M = La and K)

    Full text link
    The specific heat C(T)C(T) of BaFe2_2As2_2 single crystal, electron-doped Ba0.7_{0.7}La0.3_{0.3}Fe2_2As2_2 and hole-doped Ba0.5_{0.5}K0.5_{0.5}Fe2_2As2_2 polycrystals were measured. For undoped BaFe2_2As2_2 single crystal, a very sharp specific heat peak was observed at 136 K. This is attributed to the structural and antiferromagnetic transitions occurring at the same temperature. C(T)C(T) of the electron-doped non-superconducting Ba0.7_{0.7}La0.3_{0.3}Fe2_2As2_2 also shows a small peak at 120 K, indicating a similar but weaker structural/antiferromagnetic transition. For the hole-doped superconducting Ba0.5_{0.5}K0.5_{0.5}Fe2_2As2_2, a clear peak of C/TC/T was observed at TcT_c = 36 K, which is the highest peak seen at superconducting transition for iron-based high-TcT_c superconductors so far. The electronic specific heat coefficient γ\gamma and Debye temperature ΘD\Theta_D of these compounds were obtained from the low temperature data

    Comparison Between Electropositive and Electronegative Cold Atmospheric-Pressure Plasmas: A Modelling Study

    Get PDF
    Cold atmospheric-pressure He + N2 and He + O2 plasmas are chosen as the representatives for electropositive and electronegative plasmas, of which the discharge characteristics are studied and then compared to each other by fluid models. As the increase of the impurity (N2 or O2) fraction from 0 to 10%, for He + N2 plasmas the electron density and ion density increase, the spatiotemporal distributions of electron density, ion density, electron temperature and electron generation rate change a little. On contrast, for He + O2 plasmas the electron density decreases, the ion density first increases and then decreases, the electron temperature increases in the bulk region, but decreases in the sheath region, and the plasmas transform from ᵞ mode to α mode as the significant change of electron generation rate distributions. Larger electric field is needed in the bulk region to sustain the electronegative plasma, so the electrical characteristics of He + O2 plasmas transform form capacitive to resistive with increasing O2fraction. Meanwhile, the ion-coupling power increases dramatically, which can be estimated by a formula based on the electronegativity. A new criterion for determining the sheath boundary, |ΔE| = 5 kV/cm2, is put forward, which is found suitable for both the electropositive and electronegative plasmas

    Bayesian Centroid Estimation for Motif Discovery

    Get PDF
    Biological sequences may contain patterns that are signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We present a Bayesian model that is an extended version of the model adopted by the Gibbs motif sampler, and propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the maximum a posteriori estimator.Comment: 24 pages, 9 figure

    Electronic excitations in Bi2_2Sr2_2CaCu2_2O8_8 : Fermi surface, dispersion, and absence of bilayer splitting

    Get PDF
    From a detailed study, including polarization dependence, of the normal state angle-resolved photoemission spectra for Bi2_2Sr2_2CaCu2_2O8_8, we find only one CuO2_2 band related feature. All other spectral features can be ascribed either to umklapps from the superlattice or to ``shadow bands''. Even though the dispersion of the peaks looks like band theory, the lineshape is anomalously broad and no evidence is found for bilayer splitting. We argue that the ``dip feature'' in the spectrum below TcT_c arises not from bilayer splitting, but rather from many body effects.Comment: 4 pages, revtex, 3 uuencoded postscript figure
    • …
    corecore