5 research outputs found

    All-fiber fused-type mode selective coupler with high performance and free of pre-tapering

    Get PDF
    In this paper we propose and demonstrate a novel all-fiber fused-type mode selective coupler (MSC) that capable of converting LP01 mode to LP11 mode with high efficiency and purity. Unlike other coupler fabrication techniques for which single mode fiber (or few mode fiber) must be pre-tapered, the advantage of our proposed coupler is that pre-tapering is not required. Two different fibers of the MSC have the same diameter. We achieve LP11 mode with a high modal purity of > 90% and a coupling efficiency of >20%, with a low insertion loss of about 0.3 dB at the wavelength of 1064 nm

    Single-longitudinal-mode Fiber Ring Lasers With Taper-coupled Double-microsphere-cavities

    Get PDF
    This letter proposes and demonstrates a fiber ring laser using taper-coupled double-microsphere-cavities (DMC) to achieve single-longitudinal-mode operation. Whispering-gallery-mode (WGM) intensity distributions and transmission spectra of the DMC with different microsphere diameters are investigated both theoretically and experimentally. Due to the Vernier effect, the DMC can produce WGM spectra with a higher extinction ratio, a higher side-mode-suppression ratio (SMSR), a larger FSR and a narrower bandwidth, as compared to a single-microsphere cavity. A single-longitudinal-mode fiber ring laser operating near 1.5 μm with a bandwidth of < 0.01 nm and a signal-to-background ratio of about 60 dB is demonstrated using the taper-coupled DMC as an all-fiber mode selector

    Comparison of prognostic value between CAD-RADS 1.0 and CAD-RADS 2.0 evaluated by convolutional neural networks based CCTA

    No full text
    Objectives: The aim of the present study was to investigate the prognostic value of the novel coronary artery disease reporting and data system (CAD-RADS) 2.0 compared with CAD-RADS 1.0 in patients with suspectedcoronary artery disease (CAD) evaluated by convolutional neural networks (CNN) based coronary computed tomography angiography (CCTA). Methods: A total of 1796 consecutive inpatients with suspected CAD were evaluated by CCTA for CAD-RADS 1.0 and CAD-RADS 2.0 classifications. Kaplan-Meier and multivariate Cox models were used to estimate major adverse cardiovascular events (MACE) inclusive of all-cause mortality or myocardial infarction (MI). The C-statistic was used to assess the discriminatory ability of the two classifications. Results: In total, 94 (5.2%) MACE occurred over the median follow-up of 45.25 months (interquartile range 43.53–46.63 months). The annualized MACE rate was 0.014 (95% CI: 0.011–0.017). Kaplan-Meier survival curves indicated that the CAD-RADS classification, segment involvement score (SIS) grade, and Computed Tomography Fractional Flow Reserve (CT-FFR) classification were all significantly associated with the increase in the cumulative MACE (all P < 0.001). CAD-RADS classification, SIS grade, and CT-FFR classification were significantly associated with endpoint in univariate and multivariate Cox analysis. CAD-RADS 2.0 showed a further incremental increase in the prognostic value in predicting MACE (c-statistic 0.702, 95% CI: 0.641–0.763, P = 0.047), compared with CAD-RADS 1.0. Conclusions: The novel CAD-RADS 2.0 evaluated by CNN-based CCTA showed higher prognostic value of MACE than CAD-RADS 1.0 in patients with suspected CAD
    corecore