5,517 research outputs found

    Numerical simulation on the impact of the bionic structure on aerodynamic noises of sidewindow regions in vehicles

    Get PDF
    The paper adopted a bionic hemispherical convex structure in the A pillar-rear view mirror regions according to actual requirements. Furthermore, impacts of the bionic structure on aerodynamic characteristics and noises in the region were studied. Friction resistance of airflows was greatly reduced, fluctuations and pulsation pressures of flow fields were also reduced, and characteristics of flow fields and sound fields were improved. The computational results were finally verified by the experimental test. Firstly, the aerodynamic lift force coefficient and drag force coefficient of the bionic model were computed, and they were obviously lower than those of the original model. The adhesive force between tires and ground during vehicle running was increased, and the danger degree of “waving” of high-speed vehicle running was weakened. In this way, stability of vehicle running could be improved. Secondly, flow fields of the bionic model were computed. Compared with the original model, an obvious vortex was behind the original model, while no vortexes were behind the bionic model. Therefore, convex structures of the bionic model had obvious impacts on flow fields behind the rear view mirror. Airflow separation situations were obvious improved at wheels, windshield and rear side windows of the bionic model. Due to blocking of convex structures of the A pillar and rear view mirror in the bionic model, airflows was hindered and obvious dragging phenomena were formed. Therefore, flow fields in the side window regions could be improved greatly. In addition, the flow field scope under the rear view mirror in the bionic model was also decreased. Ringed vortex structures appeared behind the rear view mirror in the bionic model. The ringed vortex structures were closely interlaced and then extended together backwards. Vortexes behind the rear view mirror in the original model were chaotic, where most of them were attached on the surface of side windows. In the original model, turbulent flows with certain strength were on the right upper corner of the side window region. In the bionic model, no turbulent flows were in the same regions. This result indicated that through using the bionic convex structures, airflows flowing through side windows could be combed and could move backwards towards upper and lower edges of the side windows. It could be predicted that pulsation pressures on the side window surface would surely decrease. Therefore, aerodynamic noises caused by pulsation pressures in side window regions would also be improved correspondingly. Especially in regions behind A pillar-rear view mirrors, the maximum noise reduction amplitude reached about 20 dB

    Research on sound insulation characteristics of the friction stir welding magnesium alloy sheet

    Get PDF
    The friction stir welding (FSW) on magnesium alloy has already been widely used. Therefore, the research on its sound insulation characteristics appears particularly significant, based on ALE (Arbitrary Lagrangian Eulerian) adaptive meshing technique of ABAQUS/Explicit, the FSW procedure was numerically simulated and the modal solution, just a little different from the experimental result, was finally obtained, which has verified the validity of the established model, and obtain the response result to be imported into professional acoustic software to calculate the sound insulation characteristics. Subsequently, the structure-acoustic coupling method was employed to calculate the noise reduction in FSW on magnesium alloy, and through comparison with the experimental result, this coupling method proved feasible to predict the sound insulation characteristics in FSW on magnesium alloy. Furthermore, the result has also revealed that FSW could increase the noise reduction at intermediate or low frequency, in addition, which was 2 dB higher on the frontal welding surface than the reverse one. Consequently, at the installation of magnesium alloy welding parts, the frontal or reverse surface shall be reasonably selected to face the noise source in accordance with the practical situation, so as to improve the sound insulation performance to a greater extent. To some extent, the research achieves the combination of welding and acoustic

    Research on sound radiation characteristics of the high-speed train wheel

    Get PDF
    Taking the standard wheel model as an example, the radiation noise of a single wheel under excitation force which is computed by multi-body dynamics model is computed by acoustic boundary element method (BEM). Then, the damped wheel is proposed, and the sound radiation characteristics of both wheels are analyzed and compared. The results show that sound field of a single wheel presents an obvious directivity with petaloid change and continuous decrease, and the wheel tread and web contribute the most rolling noise. Compared with the standard wheel, the acoustic radiation power of the damped wheel decreased significantly, especially at the peak frequency. After that, the radiation noise generated by the wheel in the train is researched. The results show that the radiation noise generated by the wheel in the train is a complex sound field after the superposition and interference of multiple wheel noises, which are mainly in the bogies at both ends and its vicinity region. Meanwhile, the basic directivity characteristics of the petaloid change and continuous reduction are remained. The radiation noise which is generated by the wheel in the train has obvious peak characteristic, whose corresponding peak noises are below 110 dB. The radiation noise of the damped wheel is significantly smaller than that of the standard wheel at most frequency bands, and the total SPL at the observation point has decreased by 14.5 dB with obvious noise reduction effect. In order to further research the radiation noise of the damping wheel, influence factors on the noise reduction are analyzed. Finally, these parameters such as thickness and material should be considered comprehensively during designing the damping wheel, in order to find the optimal combination of all parameters

    ChatGPT for Shaping the Future of Dentistry: The Potential of Multi-Modal Large Language Model

    Full text link
    The ChatGPT, a lite and conversational variant of Generative Pretrained Transformer 4 (GPT-4) developed by OpenAI, is one of the milestone Large Language Models (LLMs) with billions of parameters. LLMs have stirred up much interest among researchers and practitioners in their impressive skills in natural language processing tasks, which profoundly impact various fields. This paper mainly discusses the future applications of LLMs in dentistry. We introduce two primary LLM deployment methods in dentistry, including automated dental diagnosis and cross-modal dental diagnosis, and examine their potential applications. Especially, equipped with a cross-modal encoder, a single LLM can manage multi-source data and conduct advanced natural language reasoning to perform complex clinical operations. We also present cases to demonstrate the potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical application. While LLMs offer significant potential benefits, the challenges, such as data privacy, data quality, and model bias, need further study. Overall, LLMs have the potential to revolutionize dental diagnosis and treatment, which indicates a promising avenue for clinical application and research in dentistry

    Human Pose Transfer with Augmented Disentangled Feature Consistency

    Full text link
    Deep generative models have made great progress in synthesizing images with arbitrary human poses and transferring poses of one person to others. Though many different methods have been proposed to generate images with high visual fidelity, the main challenge remains and comes from two fundamental issues: pose ambiguity and appearance inconsistency. To alleviate the current limitations and improve the quality of the synthesized images, we propose a pose transfer network with augmented Disentangled Feature Consistency (DFC-Net) to facilitate human pose transfer. Given a pair of images containing the source and target person, DFC-Net extracts pose and static information from the source and target respectively, then synthesizes an image of the target person with the desired pose from the source. Moreover, DFC-Net leverages disentangled feature consistency losses in the adversarial training to strengthen the transfer coherence and integrates a keypoint amplifier to enhance the pose feature extraction. With the help of the disentangled feature consistency losses, we further propose a novel data augmentation scheme that introduces unpaired support data with the augmented consistency constraints to improve the generality and robustness of DFC-Net. Extensive experimental results on Mixamo-Pose and EDN-10k have demonstrated DFC-Net achieves state-of-the-art performance on pose transfer.Comment: 22 pages, 6 figure

    Mechanical Properties of GO Nanostructures Prepared from Freeze-Drying Method

    Get PDF
    Recently, 3D graphene oxide (GO) has attracted much attention due to its high specific surface area, multifunction, and facile preparation. Here, porous GO foams with extraordinary mechanical properties were prepared by using freeze-drying technique. The structure and mechanical properties of the GO foams have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, and electronic universal testing machine. The unique structure endows the GO foams excellent elasticity, which can recover to its original shape even after compression hundreds of times. The density of GO foams has a significantly positive impact on the elastic modulus. Furthermore, the compressive strength of GO foams decreased linearly with decreasing relative humidity. A honeycomb model was constructed to investigate the effects of wall thickness, length, and included angle on the elastic modulus of GO foams. The structural evolution during the compression was revealed by finite element simulation

    The impacts of diagnosis-intervention packet payment on the providers’ behavior of inpatient care—evidence from a national pilot city in China

    Get PDF
    Background: In 2020, the Chinese government developed and implemented an innovative case-based payment method under the regional global budget called the diagnosis-intervention packet (DIP) payment to pay for inpatient care. This study aims to assess the changes to inpatient care provision in hospitals after the DIP payment reform was implemented. Methods: This study used inpatient medical costs per case, the proportion of the out-of-pocket (OOP) expenditure in inpatient medical costs, and the average length of stay (LOS) of inpatient care as outcome variables, and conducted an interrupted time series analysis to evaluate changes after the DIP payment reform. January 2021 was taken as the intervention point when a national pilot city of the DIP payment reform in the Shandong province began using the DIP payment to pay for inpatient care of secondary and tertiary hospitals. The data used in this study were obtained from the aggregated monthly claim data of inpatient care of secondary and tertiary hospitals. Results: Compared to the pre-intervention trend, the inpatient medical costs per case, the proportion of the OOP expenditure in inpatient medical costs both in tertiary and secondary hospitals significantly decreased after the intervention. After the intervention, the reduction in the inpatient medical costs per case, the proportion of the OOP expenditure in inpatient medical costs in tertiary hospital were both higher than those in secondary hospital (p < 0.001). The average LOS of inpatient care in secondary hospital significantly increased after the intervention, and it immediately increase 0.44 day after intervention (p = 0.211). Moreover, the change of average LOS of inpatient care in secondary hospital after intervention was opposite to that in tertiary hospital, it had no statistical difference (p = 0.269). Conclusion: In the short term, the DIP payment reform could not only effectively regulate provider behavior of inpatient care in hospitals, but also improves the rational allocation of the regional healthcare resources. However, the long-term effects of the DIP payment reform need to be investigated in the future
    • …
    corecore