8 research outputs found

    Road-to-Lab: Validation of the Static Load Test for Predicting On-Road Driving Performance While Using Advanced In-Vehicle Information and Communication Devices

    Get PDF
    Information, communication, and navigation devices need to beevaluated for ease-of-use and safety while driving. Lab tests, if validated, canevaluate prototype designs faster, more economically, and earlier than on-roadtests. The Static Load Test was evaluated for its ability to predict on-road driverperformance while using in-vehicle devices. In this test, participants performvarious in-vehicle tasks in a lab while viewing a videotaped road scene on amonitor, tapping a brake pedal when a central or peripheral light is observed. Forthe on-road comparison test, the device, tasks, and lights are the same, but theparticipants also drive the vehicle while performing the tasks and responding tothe lights. In both the lab and road tests, ten driver performance variables weremeasured. Our goal was to produce a linear model to predict an on-road variablefrom the lab data with low residual error, high percent variance explained, andfew errors in classifying tasks as meeting or not meeting on-road driverperformance criteria. Separate test data from a replicated Static Load Test at anindependent lab were used to further validate the models. The results indicate asimple, inexpensive, and low-fidelity Static Load Test can accurately predict anumber of on-road driver performance variables suitable for assessing the safetyand ease-of-use of advanced in-vehicle devices while driving

    Design and Research of Electron Cyclotron Resonance Heating and Current Dive System on HL-2M Tokamak

    Full text link
    A research has been conducted to develop an 8MW electron cyclotron resonance heating and current drive (ECRH/ECCD) system on HL-2M tokamak. The ECRH system compromise eight 1MW gyrotrons, eight evacuated transmission lines and three launchers. The main purpose of the ECRH system was to suppress the neo-classical tearing modes and control the plasma profile. This paper presents an overview of the design and studies performed in this framework. Some primary test results of the critical components have been released in this paper, e.g. polarizers, power monitor and fast steering launchers

    MicroRNA-181c inhibits cigarette smoke–induced chronic obstructive pulmonary disease by regulating CCN1 expression

    No full text
    Abstract Background Chronic obstructive pulmonary disease (COPD) is an obstinate pulmonary disease, causing irreversible alveoli collapse and increasing the risk for cardiovascular disease. Accumulating evidence has shown that the dysregulation of miRNAs is crucially involved in the pathogenesis and development of COPD. However, the effects and role of microRNA-181c (miR-181c) have not been investigated in a murine model of COPD. Methods miR-181c expression was detected in human lung tissue samples of 34 patients, an in vivo murine model of CS exposure, and primary human bronchial epithelial cells (HBECs) by qRT-PCR. Degeneration of lung tissue, necrosis, infiltration and neutrophil cells were assessed with H&E and flow cytometry. Interleukin (IL)-6 and IL-8 levels were determined by an enzyme-linked immunosorbent assay and qRT-PCR. Luciferase reporter assay and correlation analyses were used to confirm and measure the levels between miR-181c and its target CCN1. Results We showed that miR-181c was significantly down-regulated in lung tissues from patients with COPD compared to individuals who had never smoked (p < 0.01). We also observed a down-regulation of miR-181c in HBECs and a mouse model after cigarette smoke (CS) exposure. Functional assays demonstrated that miR-181c over-expression decreased the inflammatory response, neutrophil infiltration, reactive oxygen species (ROS) generation, and inflammatory cytokines induced by CS, while its down-regulation produced the opposite effects. Subsequent investigation found that CCN1 was a direct target of miR-181c. CCN1 expression was increased in lung tissues of COPD patients, and was negatively correlated with miR-181c expression in human COPD samples (p < 0.01). Conclusions Taken together, our data suggest the critical roles of miR-181c and its target CCN1 in COPD development, and provide potential therapeutic targets for COPD treatment

    Study of energetic particle physics with advanced ECEI system on the HL-2A tokamak

    No full text
    Understanding the physics of energetic particles (EP) is crucial for the burning plasmas in next generation fusion devices such as ITER. In this work, three types of internal kink modes (a saturated internal kink mode (SK), a resonant internal kink mode (RK), and a double e-fishbone) excited by energetic particles in the low density discharges during ECRH/ECCD heating have been studied by the newly developed 24(poloidal) × 16(radial) = 384 channel ECEI system on the HL-2A tokamak. The SK and RK rotate in the electron diamagnetic direction poloidally and are destabilized by the energetic trapped electrons. The SK is destabilized in the case of qmin > 1, while the RK is destabilized in the case of qmin < 1. The double e-fishbone, which has two m/n = 1/1 modes propagating in the opposite directions poloidally, has been observed during plasma current ramp-up with counter-ECCD. Strong thermal transfer and mode coupling between the two m/n = 1/1 modes have been studied

    Study of energetic particle physics with advanced ECEI system on the HL-2A tokamak

    No full text
    Understanding the physics of energetic particles (EP) is crucial for the burning plasmas in next generation fusion devices such as ITER. In this work, three types of internal kink modes (a saturated internal kink mode (SK), a resonant internal kink mode (RK), and a double e-fishbone) excited by energetic particles in the low density discharges during ECRH/ECCD heating have been studied by the newly developed 24(poloidal) × 16(radial) = 384 channel ECEI system on the HL-2A tokamak. The SK and RK rotate in the electron diamagnetic direction poloidally and are destabilized by the energetic trapped electrons. The SK is destabilized in the case of qmin > 1, while the RK is destabilized in the case of qmin < 1. The double e-fishbone, which has two m/n = 1/1 modes propagating in the opposite directions poloidally, has been observed during plasma current ramp-up with counter-ECCD. Strong thermal transfer and mode coupling between the two m/n = 1/1 modes have been studied
    corecore