21 research outputs found

    Accelerating the SCE-UA Global Optimization Method Based on Multi-Core CPU and Many-Core GPU

    Get PDF
    The famous global optimization SCE-UA method, which has been widely used in the field of environmental model parameter calibration, is an effective and robust method. However, the SCE-UA method has a high computational load which prohibits the application of SCE-UA to high dimensional and complex problems. In recent years, the hardware of computer, such as multi-core CPUs and many-core GPUs, improves significantly. These much more powerful new hardware and their software ecosystems provide an opportunity to accelerate the SCE-UA method. In this paper, we proposed two parallel SCE-UA methods and implemented them on Intel multi-core CPU and NVIDIA many-core GPU by OpenMP and CUDA Fortran, respectively. The Griewank benchmark function was adopted in this paper to test and compare the performances of the serial and parallel SCE-UA methods. According to the results of the comparison, some useful advises were given to direct how to properly use the parallel SCE-UA methods

    Daily streamflow simulation based on the improved machine learning method

    Get PDF
    Kan, G., He, X., Ding, L., Li, J., Hong, Y., Ren, M., Lei, T., Liang, K., Zuo, D., & Huang, P. (March-April, 2017). Daily streamflow simulation based on the improved machine learning method. Water Technology and Sciences (in Spanish), 8(2), 51-60. Daily streamflow simulation has usually been implemented by conceptual or distributed hydrological models. Nowadays, hydrological data, which can be easily obtained from automatic measuring systems, are more than enough. Therefore, machine learning turns into an effective and popular tool which is highly suited for the streamflow simulation task. In this paper, we propose an improved machine learning method referred to as PKEK model based on the previously proposed NU-PEK model for the purpose of generating daily streamflow simulation results with better accuracy and stability. Comparison results between the PKEK model and the NU-PEK model indicated that the improved model has better accuracy and stability and has a bright application prospect for daily streamflow simulation tasks

    Online monitoring and sampling analysis of siltation in the middle route of the south-to-north water diversion project

    Get PDF
    The middle route project (MRP) of the South to North Water Diversion Project is a significant infrastructure and alleviating water scarcity in Northern China. MRP suffered from untraditional siltation problems. Obvious siltation occurred in the regulating reservoir at the end of the channel and some locations with weak hydrodynamic conditions in the channel when the mineral siltation concentration in the flow is very low. To study the characteristics of the siltation and the siltation time period, an IoT based automatic siltation monitoring system using cloud was installed at the outlet of the inverted siphon project on Xiao River. Three years of online monitoring data since 2018 and the siltation samples at five sites for particle size analysis were collected. The monitoring data shows that siltation mainly occurs during March to October, and almost no siltation occurs in winter. The maximum siltation speed can reach 390 mm per day. The particle size of the siltation gradually increases from upstream to downstream, which mainly occurs in the range above 100 m. The organic matter contained in the siltation shows a significant increase from 40.3 to 86.4% at upstream and downstream sampling position, respectively. Monitoring results shows the main body of the siltation in the MRP is not the traditional siltation but the remnants of the algae that proliferate in large numbers. During March to October, the temperature is suitable for the proliferation of algae which attaches to the sediment particles and gradually grows downstream with the flow

    Ensuring water resource security in China; the need for advances in evidence based policy to support sustainable management.

    Get PDF
    China currently faces a water resource sustainability problem which is likely to worsen into the future. The Chinese government is attempting to address this problem through legislative action, but faces severe challenges in delivering its high ambitions. The key challenges revolve around the need to balance water availability with the need to feed a growing population under a changing climate and its ambitions for increased economic development. This is further complicated by the complex and multi-layered government departments, often with overlapping jurisdictions, which are not always aligned in their policy implementation and delivery mechanisms. There remain opportunities for China to make further progress and this paper reports on the outcomes of a science-to-policy roundtable meeting involving scientists and policy-makers in China. It identifies, in an holistic manner, new opportunities for additional considerations for policy implementation, continued and new research requirements to ensure evidence-based policies are designed and implemented and identifies the needs and opportunities to effectively monitor their effectiveness. Other countries around the world can benefit from assessing this case study in China

    Stochastic Flood Simulation Method Combining Flood Intensity and Morphological Indicators

    No full text
    The existing flood stochastic simulation methods are mostly applied to the stochastic simulation of flood intensity characteristics, with less consideration for the randomness of the flood hydrograph shape and its correlation with intensity characteristics. In view of this, this paper proposes a flood stochastic simulation method that combines intensity and morphological indicators. Using the Foziling and Xianghongdian reservoirs in the Pi River basin in China as examples, this method utilizes a three-dimensional asymmetric Archimedean M6 Copula to construct stochastic simulation models for peak flow, flood volume, and flood duration. Based on K-means clustering, a multivariate Gaussian Copula is employed to construct a dimensionless flood hydrograph stochastic simulation model. Furthermore, separate two-dimensional symmetric Copula stochastic simulation models are established to capture the correlations between flood intensity characteristics and shape variables such as peak shape coefficient, peak occurrence time, rising inflection point angle, and coefficient of variation. By evaluating the fit between the simulated flood characteristics and the dimensionless flood hydrograph, a complete flood hydrograph is synthesized, which can be applied in flood control dispatch simulations and other related fields. The feasibility and practicality of the proposed model are analyzed and demonstrated. The results indicate that the simulated floods closely resemble natural floods, making the simulation outcomes crucial for reservoir scheduling, risk assessment, and decision-making processes

    Influences of Climate Change and Human Activities on NDVI Changes in China

    No full text
    The spatiotemporal evolution of vegetation and its influencing factors can be used to explore the relationships among vegetation, climate change, and human activities, which are of great importance for guiding scientific management of regional ecological environments. In recent years, remote sensing technology has been widely used in dynamic monitoring of vegetation. In this study, the normalized difference vegetation index (NDVI) and standardized precipitation–evapotranspiration index (SPEI) from 1998 to 2017 were used to study the spatiotemporal variation of NDVI in China. The influences of climate change and human activities on NDVI variation were investigated based on the Mann–Kendall test, correlation analysis, and other methods. The results show that the growth rate of NDVI in China was 0.003 year−1. Regions with improved and degraded vegetation accounted for 71.02% and 22.97% of the national territorial area, respectively. The SPEI decreased in 60.08% of the area and exhibited an insignificant drought trend overall. Human activities affected the vegetation cover in the directions of both destruction and restoration. As the elevation and slope increased, the correlation between NDVI and SPEI gradually increased, whereas the impact of human activities on vegetation decreased. Further studies should focus on vegetation changes in the Continental Basin, Southwest Rivers, and Liaohe River Basin

    Sponge City Construction in China: A Survey of the Challenges and Opportunities

    No full text
    Rapid urbanization in China has caused severe water and environmental problems in recent years. To resolve the issues, the Chinese government launched a sponge city construction program in 2015. While the sponge city construction initiative is drawing attention and is spreading fast nationwide, some challenges and risks remain. This study surveyed progress of all 30 pilot sponge cities and identified a broad array of challenges from technical, physical, regulatory, and financial, to community and institutional. The most dominant challenges involve uncertainties and risks. To resolve the issues, this study also identified various opportunities to improve China’s sponge city construction program. Based on the results, recommendations are proposed including urging local governments to adopt sponge city regulations and permits to alleviate water quality and urban pluvial flooding issues, fully measuring and accounting for economic and environmental benefits, embracing regional flexibility and results-oriented approaches, and focusing on a wider range of funding resources to finance the sponge city program. Coordination among other government agencies is critical, and this is true at all level of governments. Only through greater coordination, education, and broader funding could the sponge city program be advanced meaningfully and sustainably

    Driving Effects and Spatial-Temporal Variations in Economic Losses Due to Flood Disasters in China

    No full text
    The economic loss caused by frequent flood disasters poses a great threat to China’s economic prosperity. This study analyzes the driving factors of flood-related economic losses in China. We used the extended Kaya identity to establish a factor decomposition model and the logarithmic mean Divisia index decomposition method to identify five flood-related driving effects for economic loss: demographic effect, economic effect, flash flood disaster control effect, capital efficiency effect, and loss-rainfall effect. Among these factors, the flash flood disaster control effect most obviously reduced flood-related economic losses. Considering the weak foundation of flash flood disaster prevention and control in China, non-engineering measures for flash flood prevention and control have been implemented since 2010, achieving remarkable results. Influenced by these measures, the loss-rainfall effect also showed reduction output characteristics. The demographic, economic, and capital efficiency effects showed incremental effect characteristics. China’s current economic growth leads to an increase in flood control pressure, thus explaining the incremental effect of the economic effect. This study discusses the relationship between flood-related economic loss and flash flood disaster prevention and control in China, adding value for the adjustment and formulation of future flood disaster prevention policies

    Research on Rain Pattern Classification Based on Machine Learning: A Case Study in Pi River Basin

    No full text
    For the purpose of improving the scientific nature, reliability, and accuracy of flood forecasting, it is an effective and practical way to construct a flood forecasting scheme and carry out real-time forecasting with consideration of different rain patterns. The technique for rain pattern classification is of great significance in the above-mentioned technical roadmap. With the rapid development of artificial intelligence technologies such as machine learning, it is possible and necessary to apply these new methods to assist rain classification applications. In this research, multiple machine learning methods were adopted to study the time-history distribution characteristics and conduct rain pattern classification from observed rainfall time series data. Firstly, the hourly rainfall data between 2003 and 2021 of 37 rain gauge stations in the Pi River Basin were collected to classify rain patterns based on the universally acknowledged dynamic time warping (DTW) algorithm, and the classifications were treated as the benchmark result. After that, four other machine learning methods, including the Decision Tree (DT), Long- and Short-Term Memory (LSTM) neural network, Light Gradient Boosting Machine (LightGBM), and Support Vector Machine (SVM), were specifically selected to establish classification models and the model performances were compared. By adjusting the sampling size, the influence of different sizes on the classification was analyzed. Intercomparison results indicated that LightGBM achieved the highest accuracy and the fastest training speed, the accuracy and F1 score were 98.95% and 98.58%, respectively, and the loss function and accuracy converged quickly after only 20 iterations. LSTM and SVM have satisfactory accuracy but relatively low training efficiency, and DT has fast classification speed but relatively low accuracy. With the increase in the sampling size, classification results became stable and more accurate. Besides the higher accuracy, the training efficiency of the four methods was also improved

    Study on Applicability of Conceptual Hydrological Models for Flood Forecasting in Humid, Semi-Humid Semi-Arid and Arid Basins in China

    No full text
    Flood simulation and forecasting in various types of watersheds is a hot issue in hydrology. Conceptual hydrological models have been widely applied to flood forecasting for decades. With the development of economy, modern China faces with severe flood disasters in all types of watersheds include humid, semi-humid semi-arid and arid watersheds. However, conceptual model-based flood forecasting in semi-humid semi-arid and arid regions is still challenging. To investigate the applicability of conceptual hydrological models for flood forecasting in the above mentioned regions, three typical conceptual models, include Xinanjiang (XAJ), mix runoff generation (MIX) and northern Shannxi (NS), are applied to 3 humid, 3 semi-humid semi-arid, and 3 arid watersheds. The rainfall-runoff data of the 9 watersheds are analyzed based on statistical analysis and information theory, and the model performances are compared and analyzed based on boxplots and scatter plots. It is observed the complexity of drier watershed data is higher than that of the wetter watersheds. This indicates the flood forecasting is harder in drier watersheds. Simulation results indicate all models perform satisfactorily in humid watersheds and only NS model is applicable in arid watersheds. Model with consideration of saturation excess runoff generation (XAJ and MIX) perform better than the infiltration excess-based NS model in semi-humid semi-arid watersheds. It is concluded more accurate mix runoff generation theory, more stable and efficient numerical solution of infiltration equation and rainfall data with higher spatial-temporal resolution are main obstacles for conceptual model-based flood simulation and forecasting
    corecore