94 research outputs found

    The Impact of PISA on Students' Learning: a Chinese Perspective

    Get PDF
    This thesis investigates PISA’s impact on students’ learning in a local context, Fangshan District of Beijing, in China. PISA’s growing influence on educational policymaking in domestic education systems has been widely discussed, but concerns about policy borrowing and PISA’s governing power on education have been raised. However, these discussions rarely look further into local contexts to investigate PISA’s impact on students’ learning. Through mixed methods research, this thesis presents an investigation into the impact PISA has had on students’ learning and how this impact occurs. A conceptual framework employing theories about washback effect and ecological systems theory was developed to underpin the research. Sixteen local educational policymakers and practitioners were interviewed to identify how PISA is used in the local context, and to gather their views on the perceived impact of PISA on students’ learning. Fangshan PISA data were used to triangulate their perceptions, and also to expand the understanding of their use and translation of PISA data in policymaking. Thematic analysis of interview data reveals that PISA is perceived as a new perspective, which is different from domestic assessment in some aspects, for benchmarking the quality of local education. PISA is also used as an impetus motivating local initiatives to improve educational quality, in which some PISA concepts are integrated. The mechanism of PISA’s impact on students’ learning was conceptualised via making the factors of different contextual layers which negotiate PISA’s impact explicit. Interviewees perceived that through school enactment of the local PISA-motivated initiatives, and reforms of national curriculum and assessment, to some extent, students’ learning has been gradually fostered. These perceptions are largely supported by the trend analysis and multilevel modelling of PISA data. Research findings also indicate the challenges that the local PISA data users face for appropriately interpreting and translating PISA data to inform educational policymaking

    Enhanced killing of antibiotic-resistant bacteria enabled by massively parallel combinatorial genetics

    Get PDF
    New therapeutic strategies are needed to treat infections caused by drug-resistant bacteria, which constitute a major growing threat to human health. Here, we use a high-throughput technology to identify combinatorial genetic perturbations that can enhance the killing of drug-resistant bacteria with antibiotic treatment. This strategy, Combinatorial Genetics En Masse (CombiGEM), enables the rapid generation of high-order barcoded combinations of genetic elements for high-throughput multiplexed characterization based on next-generation sequencing. We created ~34,000 pairwise combinations of Escherichia coli transcription factor (TF) overexpression constructs. Using Illumina sequencing, we identified diverse perturbations in antibiotic-resistance phenotypes against carbapenem-resistant Enterobacteriaceae. Specifically, we found multiple TF combinations that potentiated antibiotic killing by up to 10[superscript 6]-fold and delivered these combinations via phagemids to increase the killing of highly drug-resistant E. coli harboring New Delhi metallo-beta-lactamase-1. Moreover, we constructed libraries of three-wise combinations of transcription factors with >4 million unique members and demonstrated that these could be tracked via next-generation sequencing. We envision that CombiGEM could be extended to other model organisms, disease models, and phenotypes, where it could accelerate massively parallel combinatorial genetics studies for a broad range of biomedical and biotechnology applications, including the treatment of antibiotic-resistant infections.National Institutes of Health (U.S.) (New Innovator Award DP2 OD008435)United States. Office of Naval ResearchEllison Medical Foundation (New Scholar in Aging Award)Henry L. and Grace Doherty Charitable Foundatio

    Identification of Saccharomyces cerevisiae Spindle Pole Body Remodeling Factors

    Get PDF
    The Saccharomyces cerevisiae centrosome or spindle pole body (SPB) is a dynamic structure that is remodeled in a cell cycle dependent manner. The SPB increases in size late in the cell cycle and during most cell cycle arrests and exchanges components during G1/S. We identified proteins involved in the remodeling process using a strain in which SPB remodeling is conditionally induced. This strain was engineered to express a modified SPB component, Spc110, which can be cleaved upon the induction of a protease. Using a synthetic genetic array analysis, we screened for genes required only when Spc110 cleavage is induced. Candidate SPB remodeling factors fell into several functional categories: mitotic regulators, microtubule motors, protein modification enzymes, and nuclear pore proteins. The involvement of candidate genes in SPB assembly was assessed in three ways: by identifying the presence of a synthetic growth defect when combined with an Spc110 assembly defective mutant, quantifying growth of SPBs during metaphase arrest, and comparing distribution of SPB size during asynchronous growth. These secondary screens identified four genes required for SPB remodeling: NUP60, POM152, and NCS2 are required for SPB growth during a mitotic cell cycle arrest, and UBC4 is required to maintain SPB size during the cell cycle. These findings implicate the nuclear pore, urmylation, and ubiquitination in SPB remodeling and represent novel functions for these genes

    Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment

    Get PDF
    Long noncoding RNAs (lncRNAs) are often expressed in a development-specific manner, yet little is known about their roles in lineage commitment. Here, we identified Braveheart (Bvht), a heart-associated lncRNA in mouse. Using multiple embryonic stem cell (ESC) differentiation strategies, we show that Bvht is required for progression of nascent mesoderm toward a cardiac fate. We find that Bvht is necessary for activation of a core cardiovascular gene network and functions upstream of mesoderm posterior 1 (MesP1), a master regulator of a common multipotent cardiovascular progenitor. We also show that Bvht interacts with SUZ12, a component of polycomb-repressive complex 2 (PRC2), during cardiomyocyte differentiation, suggesting that Bvht mediates epigenetic regulation of cardiac commitment. Finally, we demonstrate a role for Bvht in maintaining cardiac fate in neonatal cardiomyocytes. Together, our work provides evidence for a long noncoding RNA with critical roles in the establishment of the cardiovascular lineage during mammalian development.Damon Runyon Cancer Research Foundation (DRG 2032-09)Damon Runyon Cancer Research Foundation (DFS 04-12)European Molecular Biology Organization (Long-term Fellowship)National Heart, Lung, and Blood Institute. Bench to Bassinet Program (U01HL098179)National Heart, Lung, and Blood Institute. Bench to Bassinet Program (U01HL098188)Smith Family FoundationPew Charitable Trusts. Program in the Biomedical Science

    Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    Get PDF
    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target

    Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors

    Get PDF
    Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing
    • …
    corecore