4,487 research outputs found

    Universal critical properties of the Eulerian bond-cubic model

    Full text link
    We investigate the Eulerian bond-cubic model on the square lattice by means of Monte Carlo simulations, using an efficient cluster algorithm and a finite-size scaling analysis. The critical points and four critical exponents of the model are determined for several values of nn. Two of the exponents are fractal dimensions, which are obtained numerically for the first time. Our results are consistent with the Coulomb gas predictions for the critical O(nn) branch for n<2n < 2 and the results obtained by previous transfer matrix calculations. For n=2n=2, we find that the thermal exponent, the magnetic exponent and the fractal dimension of the largest critical Eulerian bond component are different from those of the critical O(2) loop model. These results confirm that the cubic anisotropy is marginal at n=2n=2 but irrelevant for n<2n<2

    Fat-1 transgenic cattle as a model to study the function of ω-3 fatty acids

    Get PDF
    ω-3 polyunsaturated fatty acids have been shown to play an important role in health. Enriched with ω-3 polyunsaturated fatty acids modulate expression of a number of genes with such broad functions as cell proliferation, growth and apoptosis and cell signaling and transduction, these effects, seem to regulate coronary artery disease, hypertension, atherosclerosis, psychiatric disorders and various cancer. In this context, fat-1 transgenic cattle was designed to convert ω-6 to ω-3 fatty acids could form an ideal model to study the effect of ω-3 fatty acids on the above functions. This study focuses on the total genomic difference of gene expression between fat-1 transgenic cattle and wild-type using cDNA microarrays, several genes were found to be overexpressed or suppressed in transgenic cattle relative to wild-type, these discrepancy genes related with lipid metabolism, immunity, inflammation nervous development and fertility

    Néel Spin Currents in Antiferromagnets

    Get PDF
    Ferromagnets are known to support spin-polarized currents that control various spin-dependent transport phenomena useful for spintronics. On the contrary, fully compensated antiferromagnets are expected to support only globally spin-neutral currents. Here, we demonstrate that these globally spin-neutral currents can represent the Néel spin currents, i.e., staggered spin currents flowing through different magnetic sublattices. The Néel spin currents emerge in antiferromagnets with strong intrasublattice coupling (hopping) and drive the spin-dependent transport phenomena such as tunneling magnetoresistance (TMR) and spin-transfer torque (STT) in antiferromagnetic tunnel junctions (AFMTJs). Using RuO2 and Fe4GeTe2 as representative antiferromagnets, we predict that the Néel spin currents with a strong staggered spin polarization produce a sizable fieldlike STT capable of the deterministic switching of the Néel vector in the associated AFMTJs. Our work uncovers the previously unexplored potential of fully compensated antiferromagnets and paves a new route to realize the efficient writing and reading of information for antiferromagnetic spintronics

    Spin-Neutral Tunneling Anomalous Hall Effect

    Get PDF
    Anomalous Hall effect (AHE) is a fundamental spin-dependent transport property that is widely used in spintronics. It is generally expected that currents carrying net spin polarization are required to drive the AHE. Here we demonstrate that, in contrast to this common expectation, a spin-neutral tunneling AHE (TAHE), i.e. a TAHE driven by spin-neutral currents, can be realized in an antiferromagnetic (AFM) tunnel junction where an AFM electrode with a non-spin-degenerate Fermi surface and a normal metal electrode are separated by a non-magnetic barrier with strong spin-orbit coupling (SOC). The symmetry mismatch between the AFM electrode and the SOC barrier results in an asymmetric spin-dependent momentum filtering of the spin-neutral longitudinal current generating the transverse Hall current in each electrode. We predict a sizable spin-neutral TAHE in an AFM tunnel junction with a RuO2-type AFM electrode and a SnTe-type SOC barrier and show that the Hall currents are reversible by the Néel vector switching. With the Hall angle being comparable to that in conventional AHE bulk materials, the predicted spin-neutral TAHE can be used for the Néel vector detection in antiferromagnetic spintronics

    Prediction of Giant Tunneling Magnetoresistance in RuO2_{2}/TiO2_{2}/RuO2_{2} (110) Antiferromagnetic Tunnel Junctions

    Full text link
    Using first-principles quantum-transport calculations, we investigate spin-dependent electronic and transport properties of antiferromagnetic tunnel junctions (AFMTJs) that consist of (110)-oriented antiferromagnetic (AFM) metal RuO2_{2} electrodes and an insulating TiO2_{2} tunneling barrier. We predict the emergence of a giant tunneling magnetoresistance (TMR) effect in a wide energy window, a series of barrier layer thicknesses, and different interface terminations, indicating the robustness of this effect. We show that the predicted TMR cannot be explained in terms of the global transport spin-polarization of RuO2_{2} (110) but is well understood based on matching the momentum-dependent spin-polarized conduction channels of the two RuO2_{2} (110) electrodes. We predict oscillations of TMR with increasing barrier thickness, indicating a non-negligible contribution from the perfectly epitaxial interfaces. Our work helps the understanding of the physics of TMR in AFMTJs and aids in realizing efficient AFM spintronic devices

    Antiferromagnetic Correlation and the Pairing Mechanism of the Cuprates and Iron Pnictides : a View From the Functional Renormalization Group Studies

    Full text link
    We compare the one-loop functional renormalization group results for the cuprates and the iron pnictides. Interestingly a coherent picture suggesting that antiferromagnetic correlation causes pairing for both materials emerges.Comment: 4 pages, 5 figures. Proposal for detecting out of phase s-wave pairing symmetry via STM is adde

    Optimal Controlled teleportation via several kinds of three-qubit states

    Get PDF
    The probability of successfully controlled teleportating an unknown qubit using a general three-particle state is investigated. We give the analytic expressions of maximal probabilities of successfully controlled teleportating an unknown qubit via several kinds of tripartite states including a tripartite GHZ state and a tripartite W-state.Comment: 15 page

    A Chinese Herbal Decoction, Danggui Buxue Tang, Stimulates Proliferation, Differentiation and Gene Expression of Cultured Osteosarcoma Cells: Genomic Approach to Reveal Specific Gene Activation

    Get PDF
    Danggui Buxue Tang (DBT), a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA) and Radix Angelicae Sinensis (Danggui; RAS). When DBT was applied onto cultured MG-63 cells, an increase of cell proliferation and differentiation of MG-63 cell were revealed: both of these effects were significantly higher in DBT than RA or RAS extract. To search for the biological markers that are specifically regulated by DBT, DNA microarray was used to reveal the gene expression profiling of DBT in MG-63 cells as compared to that of RA- or RAS-treated cells. Amongst 883 DBT-regulated genes, 403 of them are specifically regulated by DBT treatment, including CCL-2, CCL-7, CCL-8, and galectin-9. The signaling cascade of this DBT-regulated gene expression was also elucidated in cultured MG-63 cells. The current results reveal the potential usage of this herbal decoction in treating osteoporosis and suggest the uniqueness of Chinese herbal decoction that requires a well-defined formulation. The DBT-regulated genes in the culture could serve as biological responsive markers for quality assurance of the herbal preparation
    corecore