65 research outputs found

    Assessment on performance and emission characteristics of the CRDI engine fueled with ethanol/diesel blends in addition to EGR

    Get PDF
    In this research, the CRDI engine characteristics were analyzed with the aid of exhaust gas recirculation rate (EGR) adoption fueled with ethanol blends. The test fuels were the various blends with ethanol, such as (10% of ethanol + 90% of diesel) E10D90 (20% of ethanol + 80% of diesel), E20D80, and (30% of ethanol + 70% of diesel) E30D70. From the results, it was revealed that performance characteristics were reduced when using a higher concentration of the alcohols mixed with diesel fuel. The blend E30D70 showed that brake thermal efficiency (BTE) without EGR drops by 3.8%, increased by 9.14% of BSFC, a 9.25% decrease in oxides of nitrogen emissions, and slightly decreased CO and HC emissions compared to baseline diesel operation at 60% load condition. The blend E10D90 with 20% EGR shows the highest BTE of 8.87% when compared with base fuel, due to proper fuel mixture taking place in the inlet manifold. The results indicate that the engine runs smoothly, and E30D70 has chosen an optimum blend. A further experiment was performed using E30D70 with different rates of exhaust gas recirculation system. The addition of exhaust gas recirculation with E30D70 in the common rail diesel engine exhibits oxides of nitrogen emission, but in contrast, it was noticed to have inferior performance characteristics and drastically decreased HC and CO emissions. The hydrocarbon emission decreased E10D90, E20D80, and E30D70 at 60% load condition by 21.42%, 37.38%, and 48.76%, respectively. The blends E10D90, E20D80, and E30D70 decreased carbon dioxide by 7.9%, 30.08%, and 31.98%, respectively. The maximum reduction of NOx emission was observed at about 51.06% at an EGR rate of 20% with E30D70.http://www.hindawi.com/journals/ijceam2023Mechanical and Aeronautical Engineerin

    Antioxidant rich flavonoids from Oreocnide integrifolia enhance glucose uptake and insulin secretion and protects pancreatic β-cells from streptozotocin insult

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin deficiency is the prime basis of all diabetic manifestations and agents that can bring about insulin secretion would be of pivotal significance for cure of diabetes. To test this hypothesis, we carried out bioactivity guided fractionation of <it>Oreocnide integrifolia </it>(Urticaceae); a folklore plant consumed for ameliorating diabetic symptoms using experimental models.</p> <p>Methods</p> <p>We carried out bioassay guided fractionation using RINmF and C2C12 cell line for glucose stimulated insulin secretion (GSIS) and glucose uptake potential of fractions. Further, the bioactive fraction was challenged for its GSIS in cultured mouse islets with basal (4.5 mM) and stimulated (16.7 mM) levels of glucose concentrations. The Flavonoid rich fraction (FRF) was exposed to 2 mM streptozotocin stress and the anti-ROS/RNS potential was evaluated. Additionally, the bioactive fraction was assessed for its antidiabetic and anti-apoptotic property <it>in-vivo </it>using multidose streptozotocin induced diabetes in BALB/c mice.</p> <p>Results</p> <p>The results suggested FRF to be the most active fraction as assessed by GSIS in RINm5F cells and its ability for glucose uptake in C2C12 cells. FRF displayed significant potential in terms of increasing intracellular calcium and cAMP levels even in presence of a phosphodiesterase inhibitor, IBMX in cultured pancreatic islets. FRF depicted a dose-dependent reversal of all the cytotoxic manifestations except peroxynitrite and NO formation when subjected <it>in-vitro </it>along with STZ. Further scrutinization of FRF for its <it>in-vivo </it>antidiabetic property demonstrated improved glycemic indices and decreased pancreatic β-cell apoptosis.</p> <p>Conclusions</p> <p>Overall, the flavonoid mixture has shown to have significant insulin secretogogue, insulinomimetic and cytoprotective effects and can be evaluated for clinical trials as a therapeutant in the management of diabetic manifestations.</p

    Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control

    Get PDF
    Conifer bark beetles attack and kill mature spruce and pine trees, especially during hot and dry conditions. These beetles are closely associated with ophiostomatoid fungi of the Ascomycetes, including the genera Ophiostoma, Grosmannia, and Endoconidiophora, which enhance beetle success by improving nutrition and modifying their substrate, but also have negative impacts on beetles by attracting predators and parasites. A survey of the literature and our own data revealed that ophiostomatoid fungi emit a variety of volatile organic compounds under laboratory conditions including fusel alcohols, terpenoids, aromatic compounds, and aliphatic alcohols. Many of these compounds already have been shown to elicit behavioral responses from bark beetles, functioning as attractants or repellents, often as synergists to compounds currently used in bark beetle control. Thus, these compounds could serve as valuable new agents for bark beetle management. However, bark beetle associations with fungi are very complex. Beetle behavior varies with the species of fungus, the stage of the beetle life cycle, the host tree quality, and probably with changes in the emission rate of fungal volatiles. Additional research on bark beetles and their symbiotic associates is necessary before the basic significance of ophiostomatoid fungal volatiles can be understood and their applied potential realized

    Effect of Alkali Activator on the Standard Consistency and Setting Times of Fly Ash and GGBS-Based Sustainable Geopolymer Pastes

    No full text
    In this study, an attempt has been made to study the effect of alkali activator on the standard consistency and setting times of low calcium fly ash (FA) and ground granulated blast furnace slag (GGBS)- based sustainable geopolymer pastes. Different proportions of FA and GGBS were blended into mixes of geopolymer paste using sodium hydroxide (SH) and sodium silicate (SS) as alkaline activator solution (AAS). Tests on geopolymer pastes for consistency and initial and final setting times were carried out for three different SH : SS ratios of 1 : 1, 1 : 2, and 1 : 3 for both 2.5 M (molarity) and 5.0 M of SH concentration. While increasing the molarity of SH, both consistency and setting time decreased. For all the blended binder mix, the setting time decreases with an increase in the quantity of SS in the alkali activator solution. An increase in the amount of GGBS content in the geopolymer blended binder mix increases the consistency and decreases the setting time. For both 2.5 M and 5 M blended geopolymer mixes, a decrease in the percentage of GGBS and an increase in the percentage of FA increased the setting time. Microstructural studies such as X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) analyses were carried out, and the results are presented. The FT-IR spectra for the blended binder mixes demonstrated the formation of geopolymerization and the presence of the functional groups

    An unexpected absence of queuosine modification in the tRNAs of an Escherichia coli B strain

    No full text
    The post-transcriptional processing of tRNAs decorates them with a number of modified bases important for their biological functions. Queuosine, found in the tRNAs with GUN anticodons (Asp, Asn, His, Tyr), is an extensively modified base whose biosynthetic pathway is still unclear. In this study, it was observed that the tRNATyrtRNA^{Tyr} from Escherichia coli B105 (a B strain) migrated faster than that from E. coli CA274 (a K-12 strain) on acid urea gels. The organization of tRNATyrtRNA^{Tyr} genes in E. coli B105 was found to be typical of the B strains. Subsequent analysis of tRNATyrtRNA^{Tyr} and tRNAHistRNA^{His} from several strains of E. coli on acid urea gels, and modified base analysis of tRNA preparations enriched for tRNATyrtRNA^{Tyr}, showed that E. coli B105 lacked queuosine in its tRNAs. However, the lack of queuosine in tRNAs was not a common feature of all E. coli B strains. The tgt and queA genes in B105 were shown to be functional by their ability to complement tgt and queA mutant strains. These observations suggested a block at the step of the biosynthesis of preQ1preQ_1(or preQ0preQ_0) in the B105 strain. Interestingly, a multicopy vector harbouring a functional tgt gene was toxic to E. coli B105 but not to CA274. Also, in mixed cultures, E. coli B105 was readily competed out by the CA274 strain. The importance of these observations and this novel strain (E. coli B105) in unravelling the mechanism of preQ1preQ_1 or preQ0preQ_0 biosynthesis is discussed

    Profile of drug use in urban and rural India

    No full text
    This article does not have an abstract

    Prioritization of Erosion Prone Micro-Watersheds Using Morphometric Analysis coupled with Multi-Criteria Decision Making

    No full text
    Soil erosion is a serious environmental threat amongst the prevailing major natural hazards which affects the livelihood of millions of people around the world. The deterioration of nutrient-rich topsoil can affect the sustainability of agriculture and various ecosystems by decreasing soil productivity. Conservation measures should be implemented in those regions which are critical to soil erosion. The identification of areas susceptible to soil erosion through prioritization of watershed can help in proper planning and implementation of suitable conservational measures. Therefore, in this study, the prioritization of 23 micro-watersheds present in the Dnyanganga watershed of Tapti River basin is carried out based on morphometric parameters and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). TanDEM-X 90m openly accessible DEM generated from SAR interferometry, obtained through DLR, is used for determining the morphometric parameters. These parameters are grouped into linear, areal and relief aspects. Initially, the relative weights of various morphometric parameters used in TOPSIS were determined using Saaty’s Analytical Hierarchy Process (AHP). Thereafter, the MCDM package in R software was utilized to implement TOPSIS. The micro-watersheds were classified into very high (0.459–0.357), high (0.326–0.240), moderate (0.213–0.098), and low (0.096–0.088) prioritization levels based on the TOPSIS highest closeness (Ci+) to ideal solution. It is evident from the results that micro-watersheds (MW10, MW18, MW19, MW2, MW11, and MW17) are highly susceptible to soil erosion and thus, conservation measures can be carried out in these micro-watersheds with the priority to ensure the sustainability of future agriculture by preventing excessive soil loss through erosion

    Phenological Monitoring of Paddy Crop Using Time Series MODIS Data

    No full text
    Rice is an important staple food crop worldwide, especially in India. Accurate and timely prediction of rice phenology plays a significant role in the management of water resources, administrative planning, and food security. In addition to conventional methods, remotely sensed time series data can provide the necessary estimation of rice phenological stages over a large region. Thus, the present study utilizes the 16-day composite Enhanced Vegetation Index (EVI) product with a spatial resolution of 250 m from the Moderate Resolution Imaging Spectroradiometer (MODIS) to monitor the rice phenological stages over Karur district of Tamil Nadu, India, using the Google Earth Engine (GEE) platform. The rice fields in the study area were classified using the machine learning algorithm in GEE. The ground truth was obtained from the paddy fields during crop production which was used for classifying the paddy grown area. After the classification of paddy fields, local maxima, and local minima present in each pixel of time series, the EVI product was used to determine the paddy growing stages in the study area. The results show that in the initial stage the pixel value of EVI in the paddy field shows local minima (0.23), whereas local maxima (0.41) were obtained during the peak vegetative stage. The results derived from the present study using MODIS data were cross-validated using the field data
    corecore