310 research outputs found

    Myeloid conditioning with c-kit-targeted CAR-T cells enables donor stem cell engraftment

    Get PDF
    We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (\u3c1%-13.1%). This resulted in significant depletion of the BM c-ki

    Apparatus and methods for humidity control

    Get PDF
    Apparatus is provided which controls humidity in a gas. The apparatus employs a porous interface that is preferably a manifolded array of stainless steel tubes through whose porous surface water vapor can pass. One side of the porous interface is in contact with water and the opposing side is in contact with gas whose humidity is being controlled. Water vapor is emitted from the porous surface of the tubing into the gas when the gas is being humidified, and water vapor is removed from the gas through the porous surfaces when the gas is being dehumidified. The temperature of the porous interface relative to the gas temperature determines whether humidification or dehumidification is being carried out. The humidity in the gas is sensed and compared to the set point humidity. The water temperature, and consequently the porous interface temperature, are automatically controlled in response to changes in the gas humidity level above or below the set point. Any deviation from the set point humidity is thus corrected

    Impaired phagocytosis of apoptotic cells by macrophages in chronic granulomatous disease is reversed by IFN-γ in a nitric oxide-dependent manner

    Get PDF
    Immunodeficiency in chronic granulomatous disease (CGD) is well characterized. Less understood are exaggerated sterile inflammation and autoimmunity associated with CGD. Impaired recognition and clearance of apoptotic cells resulting in their disintegration may contribute to CGD inflammation. We hypothesized that priming of macrophages (Ms) with IFN-γ would enhance impaired engulfment of apoptotic cells in CGD. Diverse M populations from CGD (gp91(phox)(-/-)) and wild-type mice, as well as human Ms differentiated from monocytes and promyelocytic leukemia PLB-985 cells (with and without mutation of the gp91(phox)), demonstrated enhanced engulfment of apoptotic cells in response to IFN-γ priming. Priming with IFN-γ was also associated with increased uptake of Ig-opsonized targets, latex beads, and fluid phase markers, and it was accompanied by activation of the Rho GTPase Rac. Enhanced Rac activation and phagocytosis following IFN-γ priming were dependent on NO production via inducible NO synthase and activation of protein kinase G. Notably, endogenous production of TNF-α in response to IFN-γ priming was critically required for inducible NO synthase upregulation, NO production, Rac activation, and enhanced phagocytosis. Treatment of CGD mice with IFN-γ also enhanced uptake of apoptotic cells by M in vivo via the signaling pathway. Importantly, during acute sterile peritonitis, IFN-γ treatment reduced excess accumulation of apoptotic neutrophils and enhanced phagocytosis by CGD Ms. These data support the hypothesis that in addition to correcting immunodeficiency in CGD, IFN-γ priming of Ms restores clearance of apoptotic cells and may thereby contribute to resolution of exaggerated CGD inflammation

    Natural evolution of desmoplastic fibroblastoma on magnetic resonance imaging: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Desmoplastic fibroblastoma (collagenous fibroma) is a recently described tumor thought to arise predominantly from subcutaneous tissue or skeletal muscle. The natural evolution of this tumor on magnetic resonance imaging has never been described, to the best of our knowledge. We herein report a case of desmoplastic fibroblastoma arising in the thigh and show the longitudinal magnetic resonance imaging findings.</p> <p>Case presentation</p> <p>A 60-year-old Japanese man presented with swelling of the medial side of his right thigh, and he complained of nighttime pain and slight tenderness. Magnetic resonance imaging demonstrated a 4 × 4 cm mass in the right thigh. Open biopsy was performed. The mass was diagnosed histologically as a benign fibrous tumor, and we maintained follow-up without surgical therapy. After one year, magnetic resonance imaging showed an increase in tumor size to 4 × 5 cm, but the histologic findings were the same as those obtained one year earlier. Resection was performed with narrow surgical margins. Pathologic diagnosis was desmoplastic fibroblastoma. Two years after surgery, the patient is free from pain and shows no signs or symptoms of recurrence.</p> <p>Conclusion</p> <p>The natural evolution of desmoplastic fibroblastoma is characterized by no changes in patterns on magnetic resonance imaging despite increasing size. This finding is clinically helpful for distinguishing desmoplastic fibroblastoma with increasing pain from the desmoid tumor.</p

    Mechanisms of Interferon-γ Production by Neutrophils and Its Function during Streptococcus pneumoniae Pneumonia

    Get PDF
    Bacterial pneumonia is a common public health problem associated with significant mortality, morbidity, and cost. Neutrophils are usually the earliest leukocytes to respond to bacteria in the lungs. Neutrophils rapidly sequester in the pulmonary microvasculature and migrate into the lung parenchyma and alveolar spaces, where they perform numerous effector functions for host defense. Previous studies showed that migrated neutrophils produce IFN-γ early during pneumonia induced by Streptococcus pneumoniae and that early production of IFN-γ regulates bacterial clearance. IFN-γ production by neutrophils requires Rac2, Hck/Lyn/Fgr Src family tyrosine kinases, and NADPH oxidase. Our current studies examined the mechanisms that regulate IFN-γ production by lung neutrophils during acute S. pneumoniae pneumonia in mice and its function. We demonstrate that IFN-γ production by neutrophils is a tightly regulated process that does not require IL-12. The adaptor molecule MyD88 is critical for IFN-γ production by neutrophils. The guanine nucleotide exchange factor CalDAG-GEFI modulates IFN-γ production. The CD11/CD18 complex, CD44, Toll-like receptors 2 and 4, TRIF, and Nrf2 are not required for IFN-γ production by neutrophils. The recently described neutrophil–dendritic cell hybrid cell, identified by its expression of Ly6G and CD11c, is present at low numbers in pneumonic lungs and is not a source of IFN-γ. IFN-γ produced by neutrophils early during acute S. pneumoniae pneumonia induces transcription of target genes in the lungs, which are critical for host defense. These studies underline the complexity of the neutrophil responses during pneumonia in the acute inflammatory response and in subsequent resolution or initiation of immune responses
    corecore