79 research outputs found

    Positive Measure Spectrum for Schroedinger Operators with Periodic Magnetic Fields

    Full text link
    We study Schroedinger operators with periodic magnetic field in Euclidean 2-space, in the case of irrational magnetic flux. Positive measure Cantor spectrum is generically expected in the presence of an electric potential. We show that, even without electric potential, the spectrum has positive measure if the magnetic field is a perturbation of a constant one.Comment: 17 page

    An inviscid dyadic model of turbulence: the fixed point and Onsager's conjecture

    Full text link
    Properties of an infinite system of nonlinearly coupled ordinary differential equations are discussed. This system models some properties present in the equations of motion for an inviscid fluid such as the skew symmetry and the 3-dimensional scaling of the quadratic nonlinearity. It is proved that the system with forcing has a unique equilibrium and that every solution blows up in finite time in H5/6H^{5/6}-norm. Onsager's conjecture is confirmed for the model system

    On products of skew rotations

    Full text link
    Let H1(p,q)H_1(p,q), H2(p,q)H_2(p,q) be two time-independent Hamiltonians with one degree of freedom and {S1t}\{S_1^t\}, {S2t}\{S_2^t\} be the one-parametric groups of shifts along the orbits of Hamiltonian systems generated by H1H_1, H2H_2. In some problems of population genetics there appear the transformations of the plane having the form T(h1,h2)=S2h2â‹…S1h1T^{(h_1,h_2)}=S^{h_2}_2\cdot S_1^{h_1} under some conditions on H1H_1, H2H_2. We study in this paper asymptotical properties of trajectories of T(h1,h2)T^{(h_1,h_2)}.Comment: 13 pages, 10 figure

    A generalization of Hausdorff dimension applied to Hilbert cubes and Wasserstein spaces

    Full text link
    A Wasserstein spaces is a metric space of sufficiently concentrated probability measures over a general metric space. The main goal of this paper is to estimate the largeness of Wasserstein spaces, in a sense to be precised. In a first part, we generalize the Hausdorff dimension by defining a family of bi-Lipschitz invariants, called critical parameters, that measure largeness for infinite-dimensional metric spaces. Basic properties of these invariants are given, and they are estimated for a naturel set of spaces generalizing the usual Hilbert cube. In a second part, we estimate the value of these new invariants in the case of some Wasserstein spaces, as well as the dynamical complexity of push-forward maps. The lower bounds rely on several embedding results; for example we provide bi-Lipschitz embeddings of all powers of any space inside its Wasserstein space, with uniform bound and we prove that the Wasserstein space of a d-manifold has "power-exponential" critical parameter equal to d.Comment: v2 Largely expanded version, as reflected by the change of title; all part I on generalized Hausdorff dimension is new, as well as the embedding of Hilbert cubes into Wasserstein spaces. v3 modified according to the referee final remarks ; to appear in Journal of Topology and Analysi

    Space-Time Complexity in Hamiltonian Dynamics

    Full text link
    New notions of the complexity function C(epsilon;t,s) and entropy function S(epsilon;t,s) are introduced to describe systems with nonzero or zero Lyapunov exponents or systems that exhibit strong intermittent behavior with ``flights'', trappings, weak mixing, etc. The important part of the new notions is the first appearance of epsilon-separation of initially close trajectories. The complexity function is similar to the propagator p(t0,x0;t,x) with a replacement of x by the natural lengths s of trajectories, and its introduction does not assume of the space-time independence in the process of evolution of the system. A special stress is done on the choice of variables and the replacement t by eta=ln(t), s by xi=ln(s) makes it possible to consider time-algebraic and space-algebraic complexity and some mixed cases. It is shown that for typical cases the entropy function S(epsilon;xi,eta) possesses invariants (alpha,beta) that describe the fractal dimensions of the space-time structures of trajectories. The invariants (alpha,beta) can be linked to the transport properties of the system, from one side, and to the Riemann invariants for simple waves, from the other side. This analog provides a new meaning for the transport exponent mu that can be considered as the speed of a Riemann wave in the log-phase space of the log-space-time variables. Some other applications of new notions are considered and numerical examples are presented.Comment: 27 pages, 6 figure

    Entropy of geometric structures

    Full text link
    We give a notion of entropy for general gemetric structures, which generalizes well-known notions of topological entropy of vector fields and geometric entropy of foliations, and which can also be applied to singular objects, e.g. singular foliations, singular distributions, and Poisson structures. We show some basic properties for this entropy, including the \emph{additivity property}, analogous to the additivity of Clausius--Boltzmann entropy in physics. In the case of Poisson structures, entropy is a new invariant of dynamical nature, which is related to the transverse structure of the characteristic foliation by symplectic leaves.Comment: The results of this paper were announced in a talk last year in IMPA, Rio (Poisson 2010

    Abstract polymer models with general pair interactions

    Full text link
    A convergence criterion of cluster expansion is presented in the case of an abstract polymer system with general pair interactions (i.e. not necessarily hard core or repulsive). As a concrete example, the low temperature disordered phase of the BEG model with infinite range interactions, decaying polynomially as 1/rd+λ1/r^{d+\lambda} with λ>0\lambda>0, is studied.Comment: 19 pages. Corrected statement for the stability condition (2.3) and modified section 3.1 of the proof of theorem 1 consistently with (2.3). Added a reference and modified a sentence at the end of sec. 2.

    Isoperiodic deformations of the acoustic operator and periodic solutions of the Harry Dym equation

    Full text link
    We consider the problem of describing the possible spectra of an acoustic operator with a periodic finite-gap density. We construct flows on the moduli space of algebraic Riemann surfaces that preserve the periods of the corresponding operator. By a suitable extension of the phase space, these equations can be written with quadratic irrationalities.Comment: 15 page

    Holder continuity of absolutely continuous spectral measures for one-frequency Schrodinger operators

    Full text link
    We establish sharp results on the modulus of continuity of the distribution of the spectral measure for one-frequency Schrodinger operators with Diophantine frequencies in the region of absolutely continuous spectrum. More precisely, we establish 1/2-Holder continuity near almost reducible energies (an essential support of absolutely continuous spectrum). For non-perturbatively small potentials (and for the almost Mathieu operator with subcritical coupling), our results apply for all energies.Comment: 16 page
    • …
    corecore