18 research outputs found

    Evaluation of Inactivation Methods for Rift Valley Fever Virus in Mouse Microglia

    No full text
    Rift Valley fever phlebovirus (RVFV) is a highly pathogenic mosquito-borne virus with bioweapon potential due to its ability to be spread by aerosol transmission. Neurological symptoms are among the worst outcomes of infection, and understanding of pathogenesis mechanisms within the brain is limited. RVFV is classified as an overlap select agent by the CDC and USDA; therefore, experiments involving fully virulent strains of virus are tightly regulated. Here, we present two methods for inactivation of live virus within samples derived from mouse microglia cells using commercially available kits for the preparation of cells for flow cytometry and RNA extraction. Using the flow cytometry protocol, we demonstrate key differences in the response of primary murine microglia to infection with fully virulent versus attenuated RVFV

    MAVS mediates a protective immune response in the brain to Rift Valley fever virus

    No full text
    Rift Valley fever virus (RVFV) is a highly pathogenic mosquito-borne virus capable of causing hepatitis, encephalitis, blindness, hemorrhagic syndrome, and death in humans and livestock. Upon aerosol infection with RVFV, the brain is a major site of viral replication and tissue damage, yet pathogenesis in this organ has been understudied. Here, we investigated the immune response in the brain of RVFV infected mice. In response to infection, microglia initiated robust transcriptional upregulation of antiviral immune genes, as well as increased levels of activation markers and cytokine secretion that is dependent on mitochondrial antiviral-signaling protein (MAVS) and independent of toll-like receptors 3 and 7. In vivo, Mavs-/- mice displayed enhanced susceptibility to RVFV as determined by increased brain viral burden and higher mortality. Single-cell RNA sequence analysis identified defects in type I interferon and interferon responsive gene expression within microglia in Mavs-/- mice, as well as dysregulated lymphocyte infiltration. The results of this study provide a crucial step towards understanding the precise molecular mechanisms by which RVFV infection is controlled in the brain and will help inform the development of vaccines and antiviral therapies that are effective in preventing encephalitis

    Therapeutic efficacy of a potent anti-Venezuelan equine encephalitis virus antibody is contingent on Fc effector function

    No full text
    ABSTRACTThe development of specific, safe, and potent monoclonal antibodies (Abs) has led to novel therapeutic options for infectious disease. In addition to preventing viral infection through neutralization, Abs can clear infected cells and induce immunomodulatory functions through engagement of their crystallizable fragment (Fc) with complement proteins and Fc receptors on immune cells. Little is known about the role of Fc effector functions of neutralizing Abs in the context of encephalitic alphavirus infection. To determine the role of Fc effector function in therapeutic efficacy against Venezuelan equine encephalitis virus (VEEV), we compared the potently neutralizing anti-VEEV human IgG F5 (hF5) Ab with intact Fc function (hF5-WT) or containing the loss of function Fc mutations L234A and L235A (hF5-LALA) in the context of VEEV infection. We observed significantly reduced binding to complement and Fc receptors, as well as differential in vitro kinetics of Fc-mediated cytotoxicity for hF5-LALA compared to hF5-WT. The in vivo efficacy of hF5-LALA was comparable to hF5-WT at −24 and + 24 h post infection, with both Abs providing high levels of protection. However, when hF5-WT and hF5-LALA were administered + 48 h post infection, there was a significant decrease in the therapeutic efficacy of hF5-LALA. Together these results demonstrate that optimal therapeutic Ab treatment of VEEV, and possibly other encephalitic alphaviruses, requires neutralization paired with engagement of immune effectors via the Fc region

    Single Amino Acid Mutations Affect Zika Virus Replication In Vitro and Virulence In Vivo

    No full text
    The 2014–2016 Zika virus (ZIKV) epidemic in the Americas resulted in large deposits of next-generation sequencing data from clinical samples. This resource was mined to identify emerging mutations and trends in mutations as the outbreak progressed over time. Information on transmission dynamics, prevalence, and persistence of intra-host mutants, and the position of a mutation on a protein were then used to prioritize 544 reported mutations based on their ability to impact ZIKV phenotype. Using this criteria, six mutants (representing naturally occurring mutations) were generated as synthetic infectious clones using a 2015 Puerto Rican epidemic strain PRVABC59 as the parental backbone. The phenotypes of these naturally occurring variants were examined using both cell culture and murine model systems. Mutants had distinct phenotypes, including changes in replication rate, embryo death, and decreased head size. In particular, a NS2B mutant previously detected during in vivo studies in rhesus macaques was found to cause lethal infections in adult mice, abortions in pregnant females, and increased viral genome copies in both brain tissue and blood of female mice. Additionally, mutants with changes in the region of NS3 that interfaces with NS5 during replication displayed reduced replication in the blood of adult mice. This analytical pathway, integrating both bioinformatic and wet lab experiments, provides a foundation for understanding how naturally occurring single mutations affect disease outcome and can be used to predict the of severity of future ZIKV outbreaks. To determine if naturally occurring individual mutations in the Zika virus epidemic genotype affect viral virulence or replication rate in vitro or in vivo, we generated an infectious clone representing the epidemic genotype of stain Puerto Rico, 2015. Using this clone, six mutants were created by changing nucleotides in the genome to cause one to two amino acid substitutions in the encoded proteins. The six mutants we generated represent mutations that differentiated the early epidemic genotype from genotypes that were either ancestral or that occurred later in the epidemic. We assayed each mutant for changes in growth rate, and for virulence in adult mice and pregnant mice. Three of the mutants caused catastrophic embryo effects including increased embryonic death or significant decrease in head diameter. Three other mutants that had mutations in a genome region associated with replication resulted in changes in in vitro and in vivo replication rates. These results illustrate the potential impact of individual mutations in viral phenotype

    Evaluation of nanolipoprotein particles (NLPs) as an in vivo delivery platform.

    No full text
    Nanoparticles hold great promise for the delivery of therapeutics, yet limitations remain with regards to the use of these nanosystems for efficient long-lasting targeted delivery of therapeutics, including imparting functionality to the platform, in vivo stability, drug entrapment efficiency and toxicity. To begin to address these limitations, we evaluated the functionality, stability, cytotoxicity, toxicity, immunogenicity and in vivo biodistribution of nanolipoprotein particles (NLPs), which are mimetics of naturally occurring high-density lipoproteins (HDLs). We found that a wide range of molecules could be reliably conjugated to the NLP, including proteins, single-stranded DNA, and small molecules. The NLP was also found to be relatively stable in complex biological fluids and displayed no cytotoxicity in vitro at doses as high as 320 µg/ml. In addition, we observed that in vivo administration of the NLP daily for 14 consecutive days did not induce significant weight loss or result in lesions on excised organs. Furthermore, the NLPs did not display overt immunogenicity with respect to antibody generation. Finally, the biodistribution of the NLP in vivo was found to be highly dependent on the route of administration, where intranasal administration resulted in prolonged retention in the lung tissue. Although only a select number of NLP compositions were evaluated, the findings of this study suggest that the NLP platform holds promise for use as both a targeted and non-targeted in vivo delivery vehicle for a range of therapeutics

    Non-covalent conjugation of protein (0841) to the NiNLP platform.

    No full text
    <p>A) SEC traces of NiNLPs incubated with His-tagged 0841 at indicated molar ratios. B) The 0841:NiNLPs were purified by SEC, and SDS-PAGE and densitometry were used to quantify the amount of 0841 and apoE422k protein in each NiNLP sample using known standards for each protein. These measured concentrations were used to calculate the number of proteins bound per NLP and were plotted as a function of the initial ratio used in the conjugation reaction.</p

    Time-dependent <i>in vivo</i> NiNLP biodistribution upon i.p. and i.n. administration.

    No full text
    <p>NiNLPs were administered by A) i.p. or B) i.n. routes and were assessed over 72 or 96 hours, respectively. Organ fluorescence was determined <i>ex vivo</i> and normalized to total organ weight. The normalized fluorescent intensity was quantitatively measured as a function of time. Data represent the average normalized fluorescence from groups of two animals, with standard error bars.</p

    Effect of repeated NiNLP administration on mouse organ weights.

    No full text
    <p>Weights of A) liver, B) kidney, C) lung, and D) spleen obtained from mice that received 25 µg of NiNLP i.n. (30 µl) or i.p. (100 µl) daily for 14 consecutive days. Control animals received an equal volume of PBS i.p.(100 µl) daily for 14 days. Normalized organ weights are represented as (organ weight, g)/(body weight, g). Data represent averaged organ weights from groups of three animals, with standard deviation error bars.</p
    corecore