8 research outputs found

    Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells

    Get PDF
    Additional file 3: Figure S3. No observable differences in lnASCs and obASCs during early bone regeneration. Critical size calvarial defects were created in the parietal bone of nude mice and assessed after 2 weeks. (A) Representative images of microCT scanning. (B) Quantification of microCT. Scale bar represents 1 mm. Bars, Âą SEM

    SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes

    Get PDF
    Evidence suggests an association between severe acute respiratory syndrome-cornavirus-2 (SARS-CoV-2) infection and the occurrence of new-onset diabetes. We examined pancreatic expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), the cell entry factors for SARS-CoV-2, using publicly available single-cell RNA sequencing data sets, and pancreatic tissue from control male and female nonhuman primates (NHPs) and humans. We also examined SARS-CoV-2 immunolocalization in pancreatic cells of SARS-CoV-2-infected NHPs and patients who had died from coronavirus disease 2019 (COVID-19). We report expression of ACE2 in pancreatic islet, ductal, and endothelial cells in NHPs and humans. In pancreata from SARS-CoV-2-infected NHPs and COVID-19 patients, SARS-CoV-2 infected ductal, endothelial, and islet cells. These pancreata also exhibited generalized fibrosis associated with multiple vascular thrombi. Two out of 8 NHPs developed new-onset diabetes following SARS-CoV-2 infection. Two out of 5 COVID-19 patients exhibited new-onset diabetes at admission. These results suggest that SARS-CoV-2 infection of the pancreas may promote acute and especially chronic pancreatic dysfunction that could potentially lead to new-onset diabetes

    Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects

    No full text
    Previously we described a reliable method based on immunodepletion for isolating mesenchymal stem cells (MSCs) from murine bone marrow and showed that, after intracranial transplantation, the cells migrated throughout forebrain and cerebellum and adopted neural cell fates. Here we systemically administered MSCs purified by immunodepletion from male bleomycin (BLM)-resistant BALB/c mice into female BLM-sensitive C57BL/6 recipients and quantified engraftment levels in lung by real-time PCR. Male DNA accounted for 2.21 × 10(-5)% of the total lung DNA in control-treated mice but was increased 23-fold (P = 0.05) in animals exposed to BLM before MSC transplantation. Fluorescence in situ hybridization revealed that engrafted male cells were localized to areas of BLM-induced injury and exhibited an epithelium-like morphology. Moreover, purification of type II epithelial cells from the lungs of transplant recipients resulted in a 3-fold enrichment of male, donor-derived cells as compared with whole lung tissue. MSC administration immediately after exposure to BLM also significantly reduced the degree of BLM-induced inflammation and collagen deposition within lung tissue. Collectively, these studies demonstrate that murine MSCs home to lung in response to injury, adopt an epithelium-like phenotype, and reduce inflammation and collagen deposition in lung tissue of mice challenged with BLM

    Decellularized Adipose Tissue Hydrogel Promotes Bone Regeneration in Critical-Sized Mouse Femoral Defect Model

    No full text
    Critical-sized bone defects fail to heal and often cause non-union. Standard treatments employ autologous bone grafting, which can cause donor tissue loss/pain. Although several scaffold types can enhance bone regeneration, multiple factors limit their level of success. To address this issue, this study evaluated a novel decellularized human adipose tissue (DAT) hydrogel as an alternative. In this study, DAT hydrogel alone, or in combination with adipose-derived stromal/stem cells (ASC), osteo-induced ASCs (OIASC), and hydroxyapatite were tested for their ability to mediate repair of a critical-sized (3 mm) femoral defect created in C57BL/6 mice. Micro-computed tomography results showed that all DAT hydrogel treated groups significantly enhanced bone regeneration, with OIASC + hydroxyapatite treated group displaying the most robust bone regeneration. Histological analyses revealed that all treatments resulted in significantly higher tissue areas with the relative mineralized tissue area significantly increased at 12 weeks; however, cartilaginous content was lowest among treatment groups with OIASC. Immunohistochemical analyses showed that DAT hydrogel enhanced collagen I and osteopontin expression, while the addition of OIASCs to the hydrogel reduced collagen II levels. Thus, DAT hydrogel promotes bone regeneration in a critical-sized femoral defect model that is further enhanced in the presence of OIASCs and hydroxyapatite

    Oil extraction from Scenedesmus obliquus using a continuous microwave system--design, optimization, and quality characterization

    No full text
    BACKGROUND: Craniomaxillofacial defects secondary to trauma, tumor resection, or congenital malformations are frequent unmet challenges, due to suboptimal alloplastic options and limited autologous tissues such as bone. Significant advances have been made in the application of adipose-derived stem/stromal cells (ASCs) in the pre-clinical and clinical settings as a cell source for tissue engineering approaches. To fully realize the translational potential of ASCs, the identification of optimal donors for ASCs will ensure the successful implementation of these cells for tissue engineering approaches. In the current study, the impact of obesity on the osteogenic differentiation of ASCs was investigated. METHODS: ASCs isolated from lean donors (body mass index \u3c25; lnASCs) and obese donors (body mass index \u3e30; obASCs) were induced with osteogenic differentiation medium as monolayers in an estrogen-depleted culture system and on three-dimensional scaffolds. Critical size calvarial defects were generated in male nude mice and treated with scaffolds implanted with lnASCs or obASCs. RESULTS: lnASCs demonstrated enhanced osteogenic differentiation in monolayer culture system, on three-dimensional scaffolds, and for the treatment of calvarial defects, whereas obASCs were unable to induce similar levels of osteogenic differentiation in vitro and in vivo. Gene expression analysis of lnASCs and obASCs during osteogenic differentiation demonstrated higher levels of osteogenic genes in lnASCs compared to obASCs. CONCLUSION: Collectively, these results indicate that obesity reduces the osteogenic differentiation capacity of ASCs such that they may have a limited suitability as a cell source for tissue engineering

    MOESM2 of Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells

    No full text
    Additional file 2: Figure S2. Estradiol enhanced osteogenic differentiation of obASCs. lnASCs and obASCs were seeded on PLGA scaffolds and induced with CDS-ODM supplemented with 10 Nm estradiol. Scaffolds stained with Alizarin Red are shown. Scale bar represents 1 mm

    MOESM1 of Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells

    No full text
    Additional file 1: Figure S1. Estradiol restores the osteogenic differentiation capacity of obASCs. (A) lnASCs (n=6 donors) and obASCs (n=6 donors) were cultured in CDS-ODM supplemented with estradiol. After 14 days, cells were stained with Alizarin Red. Scale bar represents 200 μm. (B) To quantify the amount of Alizarin Red staining, stains were eluted with CPC and optical density was read. Bars, ± SEM. *, P < 0.05; **, P < 0.01 between lnASCs and obASCs
    corecore