52 research outputs found

    Epidemiological, genetic and epigenetic aspects of the research on healthy ageing and longevity

    Get PDF
    Healthy ageing and longevity in humans result from a number of factors, including genetic background, favorable environmental and social factors and chance

    Estradiol via estrogen receptor beta influences ROS levels through the transcriptional regulation of SIRT3 in human seminoma TCam-2 cells

    Get PDF
    Human testis, gonocytes, and adult germ cells mainly express estrogen receptor beta, and estrogen receptor beta loss is associated with advanced tumor stage; however, the molecular mechanisms of estrogen receptor beta–protective effects are still to be defined. Herein, we provide evidence that in human seminoma TCam-2 cells, E2 through estrogen receptor beta upregulates the mitochondrial deacetylase sirtuin-3 at protein and messenger RNA levels. Specifically, E2 increases sirtuin-3 expression through a transcriptional mechanism due to the occupancy of sirtuin-3 promoter by estrogen receptor beta, together with the transcription factor Sp1 as evidenced by Chip reChIp assay. This complex binds to a GC cluster located between −128 bp/+1 bp and is fundamental for E2 effects, as demonstrated by Sp1 small interfering RNA studies. Beside, after 24 h, E2 stimulus significantly increased activities of superoxide dismutase and catalase to scavenge reactive oxygen species produced by 30 min of E2 stimulus. In summar..

    Mitochondrial DNA involvement in human longevity

    Get PDF
    AbstractThe main message of this review can be summarized as follows: aging and longevity, as complex traits having a significant genetic component, likely depend on a number of nuclear gene variants interacting with mtDNA variability both inherited and somatic. We reviewed the data available in the literature with particular attention to human longevity, and argued that what we hypothesize for aging and longevity could have a more general relevance and be extended to other age-related complex traits such as Alzheimer's and Parkinson's diseases. The genetics which emerges for complex traits, including aging and longevity, is thus even more complicated than previously thought, as epistatic interactions between nuclear gene polymorphisms and mtDNA variability (both somatic and inherited) as well as between mtDNA somatic mutations (tissue specific) and mtDNA inherited variants (haplogroups and sub-haplogroups) must be considered as additional players capable of explaining a part of the aging and longevity phenotype. To test this hypothesis is one of the main challenge in the genetics of aging and longevity in the next future

    The mitochondrial DNA control region shows genetically correlated levels of heteroplasmy in leukocytes of centenarians and their offspring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on heteroplasmy occurring in the mitochondrial DNA (mtDNA) control region (CR) in leukocytes of centenarians and younger subjects have shown that the C150T somatic transition is over-represented in centenarians. However, whether the occurrence/accumulation of heteroplasmy is a <it>phenotypic consequence </it>of extreme ageing or a <it>genetically controlled event </it>that may favor longevity is a question that deserves further attention. To clarify this point, we set up a Denaturing High Performance Liquid Chromatography (DHPLC) protocol to quantify mtDNA CR heteroplasmy. We then analyzed heteroplasmy in leukocytes of centenarians (100 subjects), their offspring and nieces/nephews (200 subjects, age-range 65–80 years, median age 70 years), and in leukocytes of 114 control subjects sex- and age-matched with the relatives of centenarians.</p> <p>Results</p> <p>The centenarians and their descendants, despite the different ages, showed similar levels of heteroplasmy which were significantly higher than levels in controls. In addition we found that heteroplasmy levels were significantly correlated in parent-offspring pairs (r = 0.263; p = 0.009), but were independent of mtDNA inherited variability (haplogroup and sequence analyses).</p> <p>Conclusion</p> <p>Our findings suggest that the high degree of heteroplasmy observed in centenarians is genetically controlled, and that such genetic control is independent of mtDNA variability and likely due to the nuclear genome.</p

    The mithochondrial function: a crossroad for the genetic and epigenetic regulation of aging and age-related phenomena

    No full text
    Dottorato di Ricerca in Molecular Bio-Pathology, XXIII Cycle, a.a. 2009-2010UniversitĂ  della calabri

    Study of two epigenetic age-associated modifications: DNA methylation of the rRNA gene promoter in humans and histone tail acetylation at the subtelomeric region in S. cerevisiae

    No full text
    PhD Program in Operation Research XXVII Ciclo a.a. 2014Il presente lavoro di tesi è stato realizzato in parte presso il laboratorio di genetica dell'Università della Calabria, sotto la supervisione della Professoressa Dina Bellizzi e in parte presso la Davis School of Gerontology, in collaborazione con il Professor Valter Longo direttore del USC Longevity Institute. L'invecchiamento è un processo complesso. I fenotipi d’invecchiamento variano da organismo a organismo, ma un generale declino fisiologico si realizza con l’avanzare dell'età. Una correlazione tra modificazioni epigenetiche e invecchiamento è stato proposto molti anni fa, e nel corso degli anni molteplici studi hanno fornito le prove dell’esistenza di tale connessione, suggerendo che si tratta di un fenomeno conservato lungo il processo evolutivo. In questo lavoro sono stati investigati due dei più importanti meccanismi epigenetici associati all’invecchiamento: la metilazione del DNA e l’acetilazione degli istoni. È noto che a livello globale la metilazione del DNA tende a diminuire nel corso dell’invecchiamento, con un concomitante aumento, invece, ai promotori di specifici geni. Presso il laboratorio di genetica dell’Università della Calabria è stata investigata la presenza di citosine metilate in siti CpG all’interno della regione del promotore dei geni che codificano per l’RNA ribosomiale umano nonché l’associazione tra tali livelli, l’invecchiamento e la frailty. L’attenzione è stata focalizzata su questo sito a causa di alcune peculiari caratteristiche che esso presenta: il ruolo cruciale dell’rRNA ribosomiale nelle funzioni cellulari, l’alto livello di conservazione di questa sequenza nucleotidica lungo il processo evolutivo, nonchè l’organizzazione in cluster dei geni che codificano per l’rRNA. I livelli di metilazione sono stati valutati in campioni di sangue estratti da individui di età differente e con differenti fenotipi d’invecchiamento mediante la piattaforma Sequenom MassARRAY EpiTYPER. Dall’analisi è emersa l’esistenza di una correlazione tra i livelli di metilazione di specifici dinucleotidi CpG, presenti nel promotore genico da noi investigato, l’invecchiamento e i diversi fenotipi ad esso correlati. I risultati di questo studio sono mostrati nel Capitolo 2. Studiare l’invecchiamento negli esseri umani, tuttavia, comporta numerose difficoltà, per questa ragione sono spesso utilizzati sistemi modello. Uno dei più importanti organismi modello è il lievito Saccharomyces cerevisiae attraverso cui è stato possibile individuare numerosi geni rilevanti nel processo di invecchiamento, tra cui il gene Sir2 che codifica per un’istone deacetilasi. Sir2 è un gene associato con resistenza cellulare allo stress e con la regolazione della durata della vita sia replicativa che cronologica nel lievito. Presso il laboratorio del Prof. Longo è stato in precedenza dimostrato che Sir2 blocca l’estensione della durata della vita cronologica causata dalla restrizione calorica o da mutazioni nei pathway Tor/Sch9, Ras/cAMP/PKA e promuove, inoltre, la protezione cellulare sia contro lo stress termico che ossidativo. Evidenze crescenti dimostrano che Sir2 e la sua controparte, Sas2, regolano la durata della vita di S. cerevisiae mediante acetilazione e deacetilazione degli istoni H4K16 nella regione sub-telomerica. In questo studio, abbiamo identificato un nuovo meccanismo attraverso cui Sir2, agendo sulla regione sub-telomerica, regola la protezione contro il danno ossidativo, senza influenzare l'invecchiamento cronologico, segno che questi eventi sono regolati da pathway differenti. I dati riportati supportano i risultati ottenuti in precedenza e allo stesso tempo forniscono una spiegazione parziale del meccanismo sottostante alla maggiore resistenza mostrata dalle cellule mancanti del gene Sir2, come riportato nel Capitolo 3. Durante il periodo trascorso presso i laboratori del Longevity Institute sono stata inoltre coinvolta in un secondo progetto, dimostrando che una dieta ipocalorica e non solo il digiuno sono efficaci nel ridurre la progressione tumorale e gli effetti collaterali associati alla chemioterapia, identificando inoltre nel sistema immunitario un attore fondamentale di questo processo. Data la rilevanza di questi dati, la USC si riserva la possibilità di bloccarne la divulgazione prima della pubblicazione. Tuttavia, una breve descrizione di questo lavoro è fornita in appendice A. Nella prima parte del mio programma di dottorato di ricerca, condotta presso l'Università della Calabria, ho inoltre collaborato ad uno studio volto a risolvere il dibattito circa la possibile presenza di citosine metilate all'interno del DNA mitocondriale (mtDNA). I risultati di questo studio sono illustrati nell’articolo scientifico “The Control Region of Mitochondrial DNA Shows an Unusual CpG and Non-CpG Methylation Pattern”, DNA Research, riportato in appendice B.University of Calabri

    Mitochondrial DNA a:nd epigenetics. unexpected complex interactions

    No full text
    Dottorato ci ricerca in Bio-pathologic, Ciclo XXV, a.a. 2012In the research of fundamental processes underlying aging and longevity, an emerging field is represented by "aging epigenetics". In fact, different experimental evidences demonstrate as the rate and quality of human aging depend on a complex interplay among genetic, epigenetic and environmental factors. Epigenetics refers to the programmed changes, not involving alteration of DNA sequence, leading different genotypes to phenotypes. DNA methylation is the most studied epigenetic modification occurring in all prokaryotic and eukaryotic organisms. Although the occurrence of this modification and its effects in intracellular processes has been extensively documented for the nuclear genome, conflicting reports regarding the possible presence of methylated cytosines within the mitochondrial DNA (mtDNA) have emerged. In addition, in spite of the hypothesized role of ATP availability on the methylation process , little is known about the role of mitochondrial DNA variability on the methylation status of nuclear genome. The work presented here, has addressed the complex interactions between mitochondrial DNA and epigenetic changes, both investigating the methylation of mitochondrial genome and analyzing the effects of mtDNA variation on the Global methylation of nuclear genome. In fact, a series of in vivo and in vitro investigations are here reported in three sections. In the first two sections, experimental evidences about the presence of methylated cytosines within the mitochondrial control region (D-loop), containing regulator elements for replication and transcription of mtDNA, and within the gene encoding for ribosomal RNA 12S (12S rRNA), are reported. The methylation status of the D-loop was analyzed in both blood DNA collected from human subjects and in DNA from cultured cells by bisulfite sequencing and, consecutively, by methylated/hydroxymethylated DNA immunoprecipitation assays. We found the presence of methylated (5mC) and hydroxymethylated (5hmC) cytosines in all the samples analyzed. MtDNA methylation especially occurs within non-CpG sites. It also emerged that the methylation pattern of the D-loop is strictly cell type-dependent and that it might be an example of RNA-directed DNA methylation (RdDM). The methylation of D-loop occurred mainly in the promoter region of the heavy strand and in conserved sequence Summary blocks (CSBI-III), indicating the involvement of epigenetic modifications in regulating mtDNA replication and/or transcription. Bisulfite sequencing of 12S rRNA region showed the methylation of one CpG site located at 931nt. This site was then analyzed by real-time MGB Probe-based PCR reactions in bisulfite-treated DNA extracted from peripheral venous blood collected from subjects of different age and classified for frailty phenotype. We detected the co-presence of both unmethylated and methylated cytosines in most sample analyzed. Statistical analyses revealed that 12S rRNA methylation displays sex- and age-specific differences, and it is correlated with the health status. In the third section, it is reported that global DNA methylation levels are influenced by mitochondrial DNA inherited variants, probably via the different regulation of OXPHOS machinery. So that, we prove, through cybrid technology, which is an useful approach to reveal possible pathways of communication between mitochondrial and nuclear genomes, as epigenetics processes are modulated in response to the above pathways. In the appendix an additional published paper (Montesanto et al., The genetic component of human longevity: analysis of the survival advantage of parents and siblings of Italian nonagenarians, 2011, Eur J Hum Genet 19: 882-886.), which I worked to during my PhD appointment is reported.UniversitĂ  della Calabri

    DNA methylation patterns in aging and aging phenotypes

    No full text
    Dottorato di Ricerca in Scienze della Vita, Ciclo XXXIDuring my PhD program, my work has been addressed to the study of the role of epigenetic modifications in aging and in age-related phenotypes. Epigenetics is the study of changes in gene expression that do not involve changes to the underlying DNA sequence. These changes affect cellular phenotypic expression by regulating relative gene expression levels. They are a common and natural process in living cells and are tightly controlled by pre-programmed mechanisms. Epigenetics modifications can be influenced by multiple factors including environmental conditions, lifestyle, nutrition, use of drugs, disease state and age. Patterns of DNA methylation, the best known and characterized epigenetic modification, change during aging; indeed, with increasing aging, genome-wide methylation levels decrease, meanwhile genomic regions, including CpG islands, become more methylated. Analyses of the above patterns provided new perspectives for establishing powerful biomarkers of human aging which have the potential to generate accurate prediction not only of the chronological but also of the biological age. The first section of the PhD thesis consists in a comprehensive overview of the general features of DNA methylation and its implication in age and age-related diseases. The topic is addressed referring to the methylation patterns established not only at nuclear but also at mitochondrial genome level. In addition, the influence of a number of environmental factors on the above patterns is also discussed. In the second section, an original research work, carried out in order to identify novel biomarkers of aging, is reported. In this work, methylation status of nuclear genes involved in mitochondrial fusion, fission, biogenesis and mitophagy, fundamental components of the mitochondrial quality control process, was investigated in subjects of different ages of the Calabrian population. The methylation levels of RAB32 and RHOT2 genes were significantly associated with age and, in particular, those of RAB32 even with the risk of developing disability. The study, therefore, led to the identification of two new biomarkers for both chronological and biological aging. In the Appendix, research works already published are reported. The first one concerns the correlation between DNA methylation and nutrition during lifetime. Global DNA methylation profiles were examined in different tissues of rats of different ages, fed with a standard and hypocaloric diet, and their association with aging and nutrition was evaluated. The results obtained have shown that tissue-specific variations in methylation levels occur during aging and that nutrition influences the state of global DNA methylation during the course of life. The hypocaloric diet seems to influence more strongly the epigenetic status of the offspring when administered during the maternal pre-gestational period compared to the gestation and lactation period. Therefore, changes in the global DNA methylation status represent an epigenetic mechanism by which age and nutrition intersect each oth and, in turn, influence the plasticity of aging. The second one is a review on the current advances in mitochondrial epigenetics studies and the increasing indication of mtDNA methylation status as an attractive biomarker for peculiar physiological and pathological phenotypes. It comes from the increasing evidence on the fact that, similarly to nuclear DNA, also mtDNA is subject to methylation and hydroxymethylation and these modifications are influenced by multiple environmental factors.UniversitĂ  della Calabri

    Expression profiles of stress-responder nuclear genes in relationship to common mitochondrial DNA variability

    No full text
    Dottorato di ricerca in Molecular Bio-Pathology, XXI Ciclo,2007UniversitĂ  della Calabri
    • …
    corecore