293 research outputs found

    The Renormalization Group According to Balaban - I. Small fields

    Full text link
    This is an expository account of Balaban's approach to the renormalization group. The method is illustrated with a treatment of the the ultraviolet problem for the scalar phi^4 model on a toroidal lattice in dimension d=3. This yields another proof of the stability bound. In this first paper we analyze the small field contribution to the partition function.Comment: 52 pages. Some corrections, additions, reorganizatio

    Scattering of massive Dirac fields on the Schwarzschild black hole spacetime

    Full text link
    With a generally covariant equation of Dirac fields outside a black hole, we develop a scattering theory for massive Dirac fields. The existence of modified wave operators at infinity is shown by implementing a time-dependent logarithmic phase shift from the free dynamics to offset a long-range mass term. The phase shift we obtain is a matrix operator due to the existence of both positive and negative energy wave components.Comment: LaTex, 17 page

    Markov quantum fields on a manifold

    Full text link
    We study scalar quantum field theory on a compact manifold. The free theory is defined in terms of functional integrals. For positive mass it is shown to have the Markov property in the sense of Nelson. This property is used to establish a reflection positivity result when the manifold has a reflection symmetry. In dimension d=2 we use the Markov property to establish a sewing operation for manifolds with boundary circles. Also in d=2 the Markov property is proved for interacting fields.Comment: 14 pages, 1 figure, Late

    Transition amplitudes and sewing properties for bosons on the Riemann sphere

    Full text link
    We consider scalar quantum fields on the sphere, both massive and massless. In the massive case we show that the correlation functions define amplitudes which are trace class operators between tensor products of a fixed Hilbert space. We also establish certain sewing properties between these operators. In the massless case we consider exponential fields and have a conformal field theory. In this case the amplitudes are only bilinear forms but still we establish sewing properties. Our results are obtained in a functional integral framework.Comment: 33 page

    AdS/CFT correspondence in the Euclidean context

    Full text link
    We study two possible prescriptions for AdS/CFT correspondence by means of functional integrals. The considerations are non-perturbative and reveal certain divergencies which turn out to be harmless, in the sense that reflection-positivity and conformal invariance are not destroyed.Comment: 20 pages, references and two remarks adde

    Relativistic Lee Model on Riemannian Manifolds

    Full text link
    We study the relativistic Lee model on static Riemannian manifolds. The model is constructed nonperturbatively through its resolvent, which is based on the so-called principal operator and the heat kernel techniques. It is shown that making the principal operator well-defined dictates how to renormalize the parameters of the model. The renormalization of the parameters are the same in the light front coordinates as in the instant form. Moreover, the renormalization of the model on Riemannian manifolds agrees with the flat case. The asymptotic behavior of the renormalized principal operator in the large number of bosons limit implies that the ground state energy is positive. In 2+1 dimensions, the model requires only a mass renormalization. We obtain rigorous bounds on the ground state energy for the n-particle sector of 2+1 dimensional model.Comment: 23 pages, added a new section, corrected typos and slightly different titl

    Scale Invariance in disordered systems: the example of the Random Field Ising Model

    Full text link
    We show by numerical simulations that the correlation function of the random field Ising model (RFIM) in the critical region in three dimensions has very strong fluctuations and that in a finite volume the correlation length is not self-averaging. This is due to the formation of a bound state in the underlying field theory. We argue that this non perturbative phenomenon is not particular to the RFIM in 3-d. It is generic for disordered systems in two dimensions and may also happen in other three dimensional disordered systems

    Quantum Field Theory: Where We Are

    Full text link
    We comment on the present status, the concepts and their limitations, and the successes and open problems of the various approaches to a relativistic quantum theory of elementary particles, with a hindsight to questions concerning quantum gravity and string theory.Comment: To appear in: An Assessment of Current Paradigms in the Physics of Fundamental Phenomena, to be published by Springer Verlag (2006

    Quantization of Dirac fields in static spacetime

    Get PDF
    On a static spacetime, the solutions of the Dirac equation are generated by a time-independent Hamiltonian. We study this Hamiltonian and characterize the split into positive and negative energy. We use it to find explicit expressions for advanced and retarded fundamental solutions and for the propagator. Finally, we use a fermion Fock space based on the positive/negative energy split to define a Dirac quantum field operator whose commutator is the propagator.Comment: LaTex2e, 17 page
    • …
    corecore