15 research outputs found

    Exploring the relativistic regime with Newtonian hydrodynamics: II. An effective gravitational potential for rapid rotation

    Full text link
    We present the generalization of a recently introduced modified gravitational potential for self-gravitating fluids. The use of this potential allows for an accurate approximation of general relativistic effects in an otherwise Newtonian hydrodynamics code also in cases of rapid rotation. We test this approach in numerical simulations of astrophysical scenarios related to compact stars, like supernova core collapse with both a simplified and detailed microphysical description of matter, and rotating neutron stars in equilibrium. We assess the quality of the new potential, and demonstrate that it provides a significant improvement compared to previous formulations for such potentials. Newtonian simulations of compact objects employing such an effective relativistic potential predict inaccurate pulsation frequencies despite the excellent agreement of the collapse dynamics and structure of the compact objects with general relativistic results. We analyze and discuss the reason for this behavior.Comment: 15 pages, 12 figures, minor modification

    Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue

    Full text link
    Uniqueness problems in the elliptic sector of constrained formulations of Einstein equations have a dramatic effect on the physical validity of some numerical solutions, for instance when calculating the spacetime of very compact stars or nascent black holes. The fully constrained formulation (FCF) proposed by Bonazzola, Gourgoulhon, Grandcl\'ement, and Novak is one of these formulations. It contains, as a particular case, the approximation of the conformal flatness condition (CFC) which, in the last ten years, has been used in many astrophysical applications. The elliptic part of the FCF basically shares the same differential operators as the elliptic equations in CFC scheme. We present here a reformulation of the elliptic sector of CFC that has the fundamental property of overcoming the local uniqueness problems. The correct behavior of our new formulation is confirmed by means of a battery of numerical simulations. Finally, we extend these ideas to FCF, complementing the mathematical analysis carried out in previous studies.Comment: 17 pages, 5 figures. Minor changes to be consistent with published versio

    Gravitational waves from relativistic rotational core collapse

    Full text link
    We present results from simulations of axisymmetric relativistic rotational core collapse. The general relativistic hydrodynamic equations are formulated in flux-conservative form and solved using a high-resolution shock-capturing scheme. The Einstein equations are approximated with a conformally flat 3-metric. We use the quadrupole formula to extract waveforms of the gravitational radiation emitted during the collapse. A comparison of our results with those of Newtonian simulations shows that the wave amplitudes agree within 30%. Surprisingly, in some cases, relativistic effects actually diminish the amplitude of the gravitational wave signal. We further find that the parameter range of models suffering multiple coherent bounces due to centrifugal forces is considerably smaller than in Newtonian simulations.Comment: 4 pages, 3 figure

    A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. I. Method and code tests in spherical symmetry

    Full text link
    We present a new general relativistic (GR) code for hydrodynamic supernova simulations with neutrino transport in spherical and azimuthal symmetry (1D/2D). The code is a combination of the CoCoNuT hydro module, which is a Riemann-solver based, high-resolution shock-capturing method, and the three-flavor, energy-dependent neutrino transport scheme VERTEX. VERTEX integrates the neutrino moment equations with a variable Eddington factor closure computed from a model Boltzmann equation and uses the ray-by-ray plus approximation in 2D, assuming the neutrino distribution to be axially symmetric around the radial direction, and thus the neutrino flux to be radial. Our spacetime treatment employs the ADM 3+1 formalism with the conformal flatness condition for the spatial three-metric. This approach is exact in 1D and has been shown to yield very accurate results also for rotational stellar collapse. We introduce new formulations of the energy equation to improve total energy conservation in relativistic and Newtonian hydro simulations with Eulerian finite-volume codes. Moreover, a modified version of the VERTEX scheme is developed that simultaneously conserves energy and lepton number with better accuracy and higher numerical stability. To verify our code, we conduct a series of tests, including a detailed comparison with published 1D results for stellar core collapse. Long-time simulations of proto-neutron star cooling over several seconds both demonstrate the robustness of the new CoCoNuT-VERTEX code and show the approximate treatment of GR effects by means of an effective gravitational potential as in PROMETHEUS-VERTEX to be remarkably accurate in 1D. (abridged)Comment: 36 pages, 19 eps figures; submitted to ApJS (minor revisions; some typos corrected

    The gravitational wave burst signal from core collapse of rotating stars

    Full text link
    We present results from detailed general relativistic simulations of stellar core collapse to a proto-neutron star, using two different microphysical nonzero-temperature nuclear equations of state as well as an approximate description of deleptonization during the collapse phase. Investigating a wide variety of rotation rates and profiles as well as masses of the progenitor stars and both equations of state, we confirm in this very general setup the recent finding that a generic gravitational wave burst signal is associated with core bounce, already known as type I in the literature. The previously suggested type II (or "multiple-bounce") waveform morphology does not occur. Despite this reduction to a single waveform type, we demonstrate that it is still possible to constrain the progenitor and postbounce rotation based on a combination of the maximum signal amplitude and the peak frequency of the emitted gravitational wave burst. Our models include to sufficient accuracy the currently known necessary physics for the collapse and bounce phase of core-collapse supernovae, yielding accurate and reliable gravitational wave signal templates for gravitational wave data analysis. In addition, we assess the possiblity of nonaxisymmetric instabilities in rotating nascent proto-neutron stars. We find strong evidence that in an iron core-collapse event the postbounce core cannot reach sufficiently rapid rotation to become subject to a classical bar-mode instability. However, many of our postbounce core models exhibit sufficiently rapid and differential rotation to become subject to the recently discovered dynamical instability at low rotation rates.Comment: 28 pages, 23 figures, minor change
    corecore