58 research outputs found

    The migration of gas giant planets in gravitationally unstable disks

    Get PDF
    Planets form in the disks of gas and dust that surround young stars. It is not known whether or not gas giant planets on wide orbits form the same way as Jupiter or form by the fragmentation of gravitationally unstable disks. Here we show that a giant planet that has formed in the outer regions of a protostellar disk initially migrates quickly toward the central star (migration timescale ~104 years) while accreting gas from the disk. However, in contrast with previous studies, we find that the planet eventually opens up a gap in the disk and the migration is essentially halted. At the same time, accretion-powered radiative feedback from the planet significantly limits its mass growth, keeping it within the planetary-mass regime, (i.e., below the deuterium burning limit) at least for the initial stages of disk evolution. Giant planets may therefore be able to survive on wide orbits despite their initial fast inward migration, consequently shaping the environment in which terrestrial planets that may harbor life can form

    The dynamical evolution of low-mass hydrogen-burning stars, brown dwarfs, and planetary-mass objects formed through disk fragmentation

    Get PDF
    Theory and simulations suggest that it is possible to form low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) via disk fragmentation. As disk fragmentation results in the formation of several bodies at comparable distances to the host star, their orbits are generally unstable. Here, we study the dynamical evolution of these objects. We set up the initial conditions based on the outcomes of the smoothed-particle hydrodynamics simulations of Stamatellos & Whitworth, and for comparison we also study the evolution of systems resulting from lower-mass fragmenting disks. We refer to these two sets of simulations as set 1 and set 2, respectively. At 10 Myr, approximately half of the host stars have one companion left, and approximately 22% (set 1) to 9.8% (set 2) of the host stars are single. Systems with multiple secondaries in relatively stable configurations are common (about 30% and 44%, respectively). The majority of the companions are ejected within1 Myr with velocities mostly below 5 km s−1, with some runaway escapers with velocities over 30 km s−1. Roughly 6% (set 1) and 2% (set 2) of the companions pair up into very low-mass binary systems, resulting in respective binary fractions of 3.2% and 1.2%. The majority of these pairs escape as very low-mass binaries, while others remain bound to the host star in hierarchical configurations (often with retrograde inner orbits). Physical collisions with the host star (0.43 and 0.18 events per host star for set 1 and set 2, respectively) and between companions (0.08 and 0.04 events per host star for set 1 and set 2, respectively) are relatively common and their frequency increases with increasing disk mass. Our study predicts observable properties of very low-mass binaries, low-mass hierarchical systems, the BD desert, and free-floating BDs and PMOs in and near young stellar groupings, which can be used to distinguish between different formation scenarios of very low-mass stars, BDs, and PMO

    The formation of brown dwarfs in discs: Physics, numerics, and observations

    Get PDF
    A large fraction of brown dwarfs and low-mass stars may form by gravitational fragmentation of relatively massive (a few 0.1 Msun), extended (a few hundred AU) discs around Sun-like stars. We present an ensemble of radiative hydrodynamic simulations that examine the conditions for disc fragmentation. We demonstrate that this model can explain the low-mass IMF, the brown dwarf desert, and the binary properties of low-mass stars and brown dwarfs. Observing discs that are undergoing fragmentation is possible but very improbable, as the process of disc fragmentation is short lived (discs fragment within a few thousand years).Comment: 4 pages, for the proceedings of IAU Symposium 270: Computational Star Formation, Barcelona, 201

    Brown dwarfs forming in discs: where to look for them?

    Get PDF
    A large fraction of the observed brown dwarfs may form by gravitational fragmentation of unstable discs. This model reproduces the brown dwarf desert, and provides an explanation the existence of planetary-mass objects and for the binary properties of low-mass objects. We have performed an ensemble of radiative hydrodynamic simulations and determined the statistical properties of the low-mass objects produced by gravitational fragmentation of discs. We suggest that there is a population of brown dwarfs loosely bound on wide orbits (100-5000 AU) around Sun-like stars that surveys of brown dwarf companions should target. Our simulations also indicate that planetary-mass companions to Sun-like stars are unlikely to form by disc fragmentation.Comment: To appear in the proceedings of the conference "New technologies for probing the diversity of brown dwarfs and exoplanets", Shanghai 200

    Can giant planets form by gravitational fragmentation of discs?

    Get PDF
    Gravitational fragmentation has been proposed as a mechanism for the formation of giant planets in close orbits around solar-type stars. However, it is debatable whether this mechanism can function in the inner regions (R<40 AU) of real discs. We use a newly developed method for treating the energy equation and the equation of state, which accounts for radiative transfer effects in SPH simulations of circumstellar discs. The different chemical and internal states of hydrogen and the properties of dust at different densities and temperatures (ice coated dust grains at low temperatures, ice melting, dust sublimation) are all taken into account by the new method.We present radiative hydrodynamic simulations of the inner regions of massive circumstellar discs and examine two cases: (i) a disc irradiated by a cool background radiation field (T_bgr=10K)and (ii) a disc heated by radiation from its central star (T_bgr~1/R). In neither case does the disc fragment: in the former because it cannot cool fast enough and in the latter because it is not gravitationally unstable. Our results (a) corroborate previous numerical results using different treatments for the hydrodynamics and the radiative transfer, and (b) confirm our own earlier analytic predictions. We conclude that disc fragmentation is unlikely to be able to produce giant planets around solar-type stars at radii <40 AU.Comment: Accepted by A&A, 10 pages, high-resolution available at http://www.astro.cf.ac.uk/pub/Dimitrios.Stamatellos/publications

    Episodic accretion, radiative feedback, and their role in low-mass star formation

    Full text link
    It is speculated that the accretion of material onto young protostars is episodic. We present a computational method to include the effects of episodic accretion in radiation hydrodynamic simulations of star formation. We find that during accretion events protostars are "switched on", heating and stabilising the discs around them. However, these events typically last only a few hundred years, whereas the intervals in between them may last for a few thousand years. During these intervals the protostars are effectively "switched off", allowing gravitational instabilities to develop in their discs and induce fragmentation. Thus, episodic accretion promotes disc frag- mentation, enabling the formation of low-mass stars, brown dwarfs and planetary-mass objects. The frequency and the duration of episodic accretion events may be responsible for the low-mass end of the IMF, i.e. for more than 60% of all stars.Comment: To appear in the proceedings of the 9th Pacific Rim Conference of Stellar Astrophysics, Lijiang, China, 201

    Brown dwarf formation by gravitational fragmentation of massive, extended protostellar discs

    Full text link
    We suggest that low-mass hydrogen-burning stars like the Sun should sometimes form with massive extended discs; and we show, by means of radiation hydrodynamic simulations, that the outer parts of such discs (R>100 AU) are likely to fragment on a dynamical timescale (10^3 to $10^4 yr), forming low-mass companions: principally brown dwarfs (BDs), but also very low-mass hydrogen-burning stars and planetary-mass objects. A few of the BDs formed in this way remain attached to the primary star, orbiting at large radii. The majority are released into the field, by interactions amongst themselves; in so doing they acquire only a low velocity dispersion (<2 km/s), and therefore they usually retain small discs, capable of registering an infrared excess and sustaining accretion. Some BDs form close BD/BD binaries, and these binaries can survive ejection into the field. This BD formation mechanism appears to avoid some of the problems associated with the `embryo ejection' scenario, and to answer some of the questions not yet answered by the `turbulent fragmentation' scenario.Comment: 5 pages, accepted for publication in MNRAS Letter

    The formation of brown dwarfs and low-mass stars by disc fragmentation

    Full text link
    We suggest that a high proportion of brown dwarfs are formed by gravitational fragmentation of massive, extended discs around Sun-like stars. We argue that such discs should arise frequently, but should be observed infrequently, precisely because they fragment rapidly. By performing an ensemble of radiation-hydrodynamic simulations, we show that such discs typically fragment within a few thousand years to produce mainly brown dwarfs (including planetary-mass brown dwarfs) and low-mass hydrogen-burning stars. Subsequently most of the brown dwarfs are ejected by mutual interactions. We analyse the properties of these objects that form by disc fragmentation, and compare them with observations.Comment: 4 pages, 2 figures, to appear in the proceedings of the Cool Stars 15 conferenc

    On the survivability of a population of gas giant planets on wide orbits

    Full text link
    The existence of giant planets on wide orbits (∼>100\stackrel{>}{_\sim}100AU) challenge planet formation theories; the core accretion scenario has difficulty in forming them, whereas the disc instability model forms an overabundance of them that is not seen observations. We perform NN-body simulations investigating the effect of close stellar encounters (≤1200\leq 1200AU) on systems hosting wide-orbit giant planets and the extent at which such interactions may disrupt the initial wide-orbit planet population. We find that the effect of an interaction on the orbit of a planet is stronger for high-mass, low-velocity perturbers, as expected. We find that due to just a single encounter there is a ∼17\sim 17% chance that the wide-orbit giant planet is liberated in the field, a ∼10\sim 10% chance it is scattered significantly outwards, and a ∼6\sim 6% chance it is significantly scattered inwards. Moreover, there is a ∼21%\sim 21\% chance that its eccentricity is excited to e>0.1, making it more prone to disruption in subsequent encounters. The results strongly suggest that the effect of even a single stellar encounter is significant in disrupting the primordial wide-orbit giant planet population; in reality the effect will be even more prominent, as in a young star-forming region more such interactions are expected to occur. We conclude that the low occurrence rate of wide-orbit planets revealed by observational surveys does not exclude the possibility that such planetary systems are initially abundant, and therefore the disc-instability model may be a plausible scenario for their formation.Comment: 10 pages, 9 figure
    • …
    corecore