43 research outputs found

    Increasing the Dissolution Rate of Polystyrene Waste in Solvent-Based Recycling

    Get PDF
    Solvent-based recycling of plastic waste is a promising approach for cleaning polymer chains without breaking them. However, the time required to actually dissolve the polymer in a lab environment can take hours. Different factors play a role in polymer dissolution, including temperature, turbulence, and solvent properties. This work provides insights into bottlenecks and opportunities to increase the dissolution rate of polystyrene in solvents. The paper starts with a broad solvent screening in which the dissolution times are compared. Based on the experimental results, a multiple regression model is constructed, which shows that within several solvent properties, the viscosity of the solvent is the major contributor to the dissolution time, followed by the hydrogen, polar, and dispersion bonding (solubility) parameters. These results also indicate that cyclohexene, 2-pentanone, ethylbenzene, and methyl ethyl ketone are solvents that allow fast dissolution. Next, the dissolution kinetics of polystyrene in cyclohexene in a lab-scale reactor and a baffled reactor are investigated. The effects of temperature, particle size, impeller speed, and impeller type were studied. The results show that increased turbulence in a baffled reactor can decrease the dissolution time from 40 to 7 min compared to a lab-scale reactor, indicating the importance of a proper reactor design. The application of a first-order kinetic model confirms that dissolution in a baffled reactor is at least 5-fold faster than that in a lab-scale reactor. Finally, the dissolution kinetics of a real waste sample reveal that, in optimized conditions, full dissolution occurs after 5 min

    Recent Advances in Pre-Treatment of Plastic Packaging Waste

    Get PDF
    There is an urgent need to close the loop of plastic waste. One of the main challenges towards plastic packaging waste recycling is the presence of a variety of contaminants. These contaminants include organic residues, additives, labels, inks and also other plastic types that can be present in the waste stream due to missorting or in multimaterial structures (e.g. multilayer films in packaging). In this context, pre-treatment processes are a promising route to tackle the difficulties that are encountered in mechanical and chemical recycling due to these contaminants. This chapter gives better insight on the already existing pre-treatment techniques and on the advances that are being developed and/or optimized in order to achieve closed-loop recycling. Some of these advanced pre-treatments include chemical washing to remove inks (deinking), extraction methods to remove undesired plastic additives and dissolution-based pre-treatments, such as delamination and dissolution-precipitation techniques

    Material Recycling - Trends and Perspectives

    No full text
    The presently common practice of wastes' land-filling is undesirable due to legislation pressures, rising costs and the poor biodegradability of commonly used materials. Therefore, recycling seems to be the best solution. The purpose of this book is to present the state-of-the-art for the recycling methods of several materials, as well as to propose potential uses of the recycled products. It targets professionals, recycling companies, researchers, academics and graduate students in the fields of waste management and polymer recycling in addition to chemical engineering, mechanical engineering, chemistry and physics. This book comprises 16 chapters covering areas such as, polymer recycling using chemical, thermo-chemical (pyrolysis) or mechanical methods, recycling of waste tires, pharmaceutical packaging and hardwood kraft pulp and potential uses of recycled wastes

    Polymerization Kinetics of Poly(2-Hydroxyethyl Methacrylate) Hydrogels and Nanocomposite Materials

    No full text
    Hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) are a very important class of biomaterials with several applications mainly in tissue engineering and contacts lenses. Although the polymerization kinetics of HEMA have been investigated in the literature, the development of a model, accounting for both the chemical reaction mechanism and diffusion-controlled phenomena and valid over the whole conversion range, has not appeared so far. Moreover, research on the synthesis of nanocomposite materials based on a polymer matrix has grown rapidly recently because of the improved mechanical, thermal and physical properties provided by the polymer. In this framework, the objective of this research is two-fold: to provide a kinetic model for the polymerization of HEMA with accurate estimations of the kinetic and diffusional parameters employed and to investigate the effect of adding various types and amounts of nano-additives to the polymerization rate. In the first part, experimental data are provided from Differential Scanning Calorimetry (DSC) measurements on the variation of the reaction rate with time at several polymerization temperatures. These data are used to accurately evaluate the kinetic rate constants and diffusion-controlled parameters. In the second part, nanocomposites of PHEMA are formed, and the in situ bulk radical polymerization kinetics is investigated with DSC. It was found that the inclusion of nano-montmorillonite results in a slight enhancement of the polymerization rate, while the inverse holds when adding nano-silica. These results are interpreted in terms of noncovalent interactions, such as hydrogen bonding between the monomer and polymer or the nano-additive. X-Ray Diffraction (XRD) and Fourier Transform Infra-Red (FTIR) measurements were carried out to verify the results

    Thermal Degradation Kinetics and Viscoelastic Behavior of Poly(Methyl Methacrylate)/Organomodified Montmorillonite Nanocomposites Prepared via In Situ Bulk Radical Polymerization

    No full text
    Nanocomposites of polymers with nanoclays have recently found great research interest due to their enhanced thermal and mechanical properties. Deep understanding of the kinetics of thermal degradation of such materials is very important, since the degradation mechanism usually changes in the presence of the nano-filler. In this investigation, poly(methyl methacrylate)/organomodified clay nanocomposite materials were prepared by the in situ free radical bulk polymerization technique. The thermal degradation of the products obtained was studied by means of thermogravimetric analysis at several heating rates. Isoconversional kinetic analysis was conducted in order to investigate the effect of degradation conversion on the activation energy. Both, pure poly(methyl methacrylate) (PMMA) and its nanocomposites were found to degrade through a two-step reaction mechanism. Data arising from a differential and an integral method were used to disclose the correlation between activation energies (Eα) and the extent of degradation (α). It was found that Eα value improved for all nanocomposites at α values higher than 0.3. Moreover, the viscoelastic behavior of the obtained nanocomposites was examined by means of dynamic mechanical thermal analysis. All nanocomposites exhibited higher storage modulus in comparison to the virgin PMMA at room temperature, while the increment of clay amount improved their stiffness gradually

    Bioactive Edible Gel Films Based on Wheat Flour and Glucose for Food Packaging Applications

    No full text
    In order to prepare bioactive edible gel films with enhanced properties, the feasibility of using wheat flour as a raw material with glucose added at several concentrations was studied in this investigation. Films were prepared with glucose concentrations of 0.5, 0.7 and 1 g/g of flour and characterized for their physicochemical properties, including water content, solubility, degree of swelling, chemical structure by FT-IR (ATR) spectroscopy, morphology by SEM microscopy, thermal properties by DSC, gas and water vapor permeability and antioxidant activity. Biodegradation studies were also carried out in soil for 27 days and evaluated by weight loss measurements. It was found that the gel film with the higher glucose concentration exhibits a homogeneous and continuous structure with no cracks and no fragility, accompanied by an increased thickness and solubility and a decreased degree of swelling compared to those with lower concentrations. The chemical structure of all films was verified. Moreover, the increase in glucose content leads to better gas barrier properties with lower oxygen, CO2 and water vapor transmission rates and increased water vapor permeability. A slightly elevated melting temperature was observed in the films with higher glucose content. Higher antioxidant activity was also associated with higher percentage of glucose. Finally, the biodegradation of the films ranged from 13 to nearly 70%. Therefore, it can be concluded that the addition of glucose to wheat flour in concentration up to 1 g/g could result in edible gel films with excellent properties to be used in food packaging applications
    corecore