14 research outputs found

    Methanol oxidation at platinized copper particles prepared by galvanic replacement

    Get PDF
    Bimetallic Pt-Cu particles have been prepared by galvanic replacement of Cu precursor nanoparticles, upon the treatment of the latter with a chloro-platinate acidic solution. The resulting particles, typically a few tens of nm large, were supported on high surface area carbon (Vulcan® XC–72R, Cabot) and tested as electrodes. Surface electrochemistry in deaerated acid solutions was similar to that of pure Pt, indicating the existence of a Pt shell (hence the particles are denoted as Pt(Cu)). Pt(Cu)/C supported catalysts exhibit superior carbon monoxide and methanol oxidation activity with respect to their Pt/C analogues when compared on a per electroactive surface area basis, due to the modification of Pt activity by Cu residing in the particle core. However, as a result of large particle size and agglomeration phenomena, Pt(Cu)/C are still inferior to Pt/C when compared on a mass specific activity basis

    Regenerative Energy Storage System for Space Exploration Missions

    Full text link
    This paper describes the development and testing of a 1 kW reversible solid oxide fuel cell intended for energy storage on space exploration missions, particularly for long term Mars exploration. The energy is stored as H2 or CO produced by electrolysis of H2O or CO2. The reactants are then converted back to its original composition by producing electricity. The breadboard was operated for 1250 hours alternating between electrolyser mode and fuel cell mode with H2/H2O as reactants. During the tests, as long as the mechanical integrity of the system was maintained, no degradation effect was observed. At the end of the test period, the fuel cell was operated for three full cycles (approx. 50 hours) with CO/CO2 as reactants. The performance on CO/CO2 was lower than for hydrogen, but sufficient to be used in a compact energy storage system for Mars exploration

    ELECTROCHEMICAL PROMOTED CATALYSIS: TOWARDS PRACTICAL UTILIZATION

    No full text
    Electrochemical promotion (EP) of catalysis has already been recognized as “a valuable development in catalytic research” (J. Pritchard, 1990) and as “one of the most remarkable advances in electrochemistry since 1950” (J. O’M. Bockris, 1996). Laboratory studies have clearly elucidated the phenomenology of electrochemical promotion and have proven that EP is a general phenomenon at the interface of catalysis and electrochemistry. The major progress toward practical utilization of EP is surveyed in this paper. The focus is given on the electropromotion of industrial ammonia synthesis catalyst, the bipolar EP and the development of a novel monolithic electropromoted reactor (MEPR) in conjunction with the electropromotion of thin sputtered metal films. Future perspectives of electrochemical promotion applications in the field of hydrogen technologies are discussed

    Effect of Steam to Carbon Dioxide Ratio on the Performance of a Solid Oxide Cell for H<sub>2</sub>O/CO<sub>2</sub> Co-Electrolysis

    No full text
    The mixture of H2 and CO, the so-called syngas, is the value-added product of H2O and CO2 co-electrolysis and the feedstock for the production of value-added chemicals (mainly through Fischer-Tropsch). The H2/CO ratio determines the process in which syngas will be utilized and the type of chemicals it will produce. In the present work, we investigate the effect of H2O/CO2 (steam/carbon dioxide, S/C) ratio of 0.5, 1 and 2 in the feed, on the electrochemical performance of an 8YSZ electrolyte-supported solid oxide cell and the H2/CO ratio in the outlet, under co-electrolysis at 900 °C. The B-site iron doped lanthanum strontium chromite La0.75Sr0.25Cr0.9Fe0.1O3-δ (LSCF) is used as fuel electrode material while as oxygen electrode the state-of-the art LSM perovskite is employed. LSCF is a mixed ionic-electronic conductor (MIEC) operating both under a reducing and oxidizing atmosphere. The cell is electrochemically characterized under co-electrolysis conditions both in the presence and absence of hydrogen in the feed of the steam and carbon dioxide mixtures. The results indicate that under the same concentration of hydrogen and different S/C ratios, the same electrochemical performance with a maximum current density of approximately 400 mA cm−2 is observed. However, increasing p(H2) in the feed results in higher OCV, smaller iV slope and Rp values. Furthermore, the maximum current density obtained from the cell does not seem to be affected by whether H2 is present or absent from the fuel electrode feed but has a significant effect on the H2/CO ratio in the analyzed outlet stream. Moreover, the H2/CO ratio seems to be identical under polarization at different current density values. Remarkably, the performance of the LSCF perovskite fuel electrode is not compromised by the exposure to oxidizing conditions, showcasing that this class of electrocatalysts retains their reactivity in oxidizing, reducing, and humid environments

    Investigation of Advanced Components in a High Pressure Single-Cell Electrolyser for the Development of a HP-PEM-ELY Stack as Part of a Regenerative Fuel Cell System

    No full text
    The objective of the presented work, done under current ESA activity (Contract No. 4000109578/13/NL/SC), is the performance and tolerance evaluation of selected components and materials for the development of a High Pressure, Polymer Electrolyte Membrane (PEM) Electrolyser (HP-PEM-ELY) Stack, aiming to operate at 80 bar with a performance output of 0.3 A/cm2 at 1.6 V. An extensive study was performed on a single-cell high pressure PEM electrolyser manifold, leading to a list of materials with suitable properties and engineering solutions towards operation in space environment. This investigation provided the necessary feedback for the design of a HP-PEM-ELY stack, which is also discussed. The ultimate target of the current ESA activity is to implement research findings, develop and operate a complete regenerative fuel cell system, comprising of a High Temperature Fuel Cell Stack and the HP-PEM-ELY stack. System aspects are briefly discussed

    Regenerative Energy Storage System for Space Exploration Missions

    No full text
    This paper describes the development and testing of a 1 kW reversible solid oxide fuel cell intended for energy storage on space exploration missions, particularly for long term Mars exploration. The energy is stored as H2 or CO produced by electrolysis of H2O or CO2. The reactants are then converted back to its original composition by producing electricity. The breadboard was operated for 1250 hours alternating between electrolyser mode and fuel cell mode with H2/H2O as reactants. During the tests, as long as the mechanical integrity of the system was maintained, no degradation effect was observed. At the end of the test period, the fuel cell was operated for three full cycles (approx. 50 hours) with CO/CO2 as reactants. The performance on CO/CO2 was lower than for hydrogen, but sufficient to be used in a compact energy storage system for Mars exploration

    Regenerative Energy Storage System for Space Exploration Missions

    No full text
    This paper describes the development and testing of a 1 kW reversible solid oxide fuel cell intended for energy storage on space exploration missions, particularly for long term Mars exploration. The energy is stored as H2 or CO produced by electrolysis of H2O or CO2. The reactants are then converted back to its original composition by producing electricity. The breadboard was operated for 1250 hours alternating between electrolyser mode and fuel cell mode with H2/H2O as reactants. During the tests, as long as the mechanical integrity of the system was maintained, no degradation effect was observed. At the end of the test period, the fuel cell was operated for three full cycles (approx. 50 hours) with CO/CO2 as reactants. The performance on CO/CO2 was lower than for hydrogen, but sufficient to be used in a compact energy storage system for Mars exploration

    Carbon Tolerant Fuel Electrodes for Reversible Sofc Operating on Carbon Dioxide

    No full text
    A challenging barrier for the broad, successful implementation of Reversible Solid Oxide Fuel Cell (RSOFC) technology for Mars application utilizing CO2 from the Martian atmosphere as primary reactant, remains the long term stability by the effective control and minimization of degradation resulting from carbon built up. The perovskitic type oxide material La0.75Sr0.25Cr0.9Fe0.1O3-δ (LSCF) has been developed and studied for its performance and tolerance to carbon deposition, employed as bi-functional fuel electrode in a Reversible SOFC operating on the CO2 cycle (Solid Oxide Electrolysis Cell/SOEC: CO2 electrolysis, Solid Oxide Fuel Cell/SOFC: power generation through the electrochemical reaction of CO and oxygen). A commercial state-of-the-art NiO-YSZ (8% mol Y2O3 stabilized ZrO2) cermet was used as reference material. CO2 electrolysis and fuel cell operation in 70% CO/CO2 were studied in the temperature range of 900-1000°C. YSZ was used as electrolyte while LSM-YSZ/LSM (La0.2Sr0.8MnO3) as oxygen electrode. Results showed that LSCF had high and stable performance under RSOFC operation

    Carbon Tolerant Fuel Electrodes for Reversible Sofc Operating on Carbon Dioxide

    No full text
    A challenging barrier for the broad, successful implementation of Reversible Solid Oxide Fuel Cell (RSOFC) technology for Mars application utilizing CO2 from the Martian atmosphere as primary reactant, remains the long term stability by the effective control and minimization of degradation resulting from carbon built up. The perovskitic type oxide material La0.75Sr0.25Cr0.9Fe0.1O3-δ (LSCF) has been developed and studied for its performance and tolerance to carbon deposition, employed as bi-functional fuel electrode in a Reversible SOFC operating on the CO2 cycle (Solid Oxide Electrolysis Cell/SOEC: CO2 electrolysis, Solid Oxide Fuel Cell/SOFC: power generation through the electrochemical reaction of CO and oxygen). A commercial state-of-the-art NiO-YSZ (8% mol Y2O3 stabilized ZrO2) cermet was used as reference material. CO2 electrolysis and fuel cell operation in 70% CO/CO2 were studied in the temperature range of 900-1000°C. YSZ was used as electrolyte while LSM-YSZ/LSM (La0.2Sr0.8MnO3) as oxygen electrode. Results showed that LSCF had high and stable performance under RSOFC operation
    corecore