9 research outputs found

    Probabilistic Learning by Demonstration from Complete and Incomplete Data

    No full text
    In recent years we have observed a convergence of the fields of robotics and machine learning initiated by technological advances bringing AI closer to the physical world. A prerequisite, however, for successful applications is to formulate reliable and precise offline algorithms, requiring minimal tuning, fast and adaptive online algorithms and finally effective ways of rectifying corrupt demonstrations. In this work we aim to address some of those challenges. We begin by employing two offline algorithms for the purpose of Learning by Demonstration (LbD). A Bayesian non-parametric approach, able to infer the optimal model size without compromising the model's descriptive power and a Quantum Statistical extension to the mixture model able to achieve high precision for a given model size. We explore the efficacy of those algorithms in several one- and multi-shot LbD application achieving very promising results in terms of speed and and accuracy. Acknowledging that more realistic robotic applications also require more adaptive algorithmic approaches, we then introduce an online learning algorithm for quantum mixtures based on the online EM. The method exhibits high stability and precision, outperforming well-established online algorithms, as demonstrated for several regression benchmark datasets and a multi-shot trajectory LbD case study. Finally, aiming to account for data corruption due to sensor failures or occlusions, we propose a model for automatically rectifying damaged sequences in an unsupervised manner. In our approach we take into account the sequential nature of the data, the redundancy manifesting itself among repetitions of the same task and the potential of knowledge transfer across different tasks. We have devised a temporal factor model, with each factor modelling a single basic pattern in time and collectively forming a dictionary of fundamental trajectories shared across sequences. We have evaluated our method in a number of real-life datasets.Open Acces

    A nonparametric Bayesian approach toward robot learning by demonstration

    No full text
    In the past years, many authors have considered application of machine learning methodologies to effect robot learning by demonstration. Gaussian mixture regression (GMR) is one of the most successful methodologies used for this purpose. A major limitation of GMR models concerns automatic selection of the proper number of model states, i.e., the number of model component densities. Existing methods, including likelihood- or entropy-based criteria, usually tend to yield noisy model size estimates while imposing heavy computational requirements. Recently, Dirichlet process (infinite) mixture models have emerged in the cornerstone of nonparametric Bayesian statistics as promising candidates for clustering applications where the number of clusters is unknown a priori. Under this motivation, to resolve the aforementioned issues of GMR-based methods for robot learning by demonstration, in this paper we introduce a nonparametric Bayesian formulation for the GMR model, the Dirichlet process GMR model. We derive an efficient variational Bayesian inference algorithm for the proposed model, and we experimentally investigate its efficacy as a robot learning by demonstration methodology, considering a number of demanding robot learning by demonstration scenarios

    The one-hidden layer non-parametric Bayesian kernel machine

    No full text
    In this paper, we present a nonparametric Bayesian approach towards one-hidden-layer feed forward neural networks. Our approach is based on a random selection of the weights of the synapses between the input and the hidden layer neurons, and a Bayesian marginalization over the weights of the connections between the hidden layer neurons and the output neurons, giving rise to a kernel-based nonparametric Bayesian inference procedure for feed forward neural networks. Compared to existing approaches, our method presents a number of advantages, with the most significant being: (i) it offers a significant improvement in terms of the obtained generalization capabilities, (ii) being a nonparametric Bayesian learning approach, it entails inference instead of fitting to data, thus resolving the over fitting issues of non-Bayesian approaches, and (iii) it yields a full predictive posterior distribution, thus naturally providing a measure of uncertainty on the generated predictions (expressed by means of the variance of the predictive distribution), without the need of applying computationally intensive methods, e.g., bootstrap. We exhibit the merits of our approach by investigating its application to two difficult multimedia content classification applications: semantic characterization of audio scenes based on content, and yearly song classification, as well as a set of benchmark classification and regression task

    A Spatially-constrained Normalized Gamma Process Prior

    No full text
    In this work, we propose a novel nonparametric Bayesian method for clustering of data with spatial interdependencies. Specifically, we devise a novel normalized Gamma process, regulated by a simplified (pointwise) Markov random field (Gibbsian) distribution with a countably infinite number of states. As a result of its construction, the proposed model allows for introducing spatial dependencies in the clustering mechanics of the normalized Gamma process, thus yielding a novel nonparametric Bayesian method for spatial data clustering. We derive an efficient truncated variational Bayesian algorithm for model inference. We examine the efficacy of our approach by considering an image segmentation application using a real-world dataset. We show that our approach outperforms related methods from the field of Bayesian nonparametrics, including the infinite hidden Markov random field model, and the Dirichlet process prio

    A spatially-constrained normalized gamma process for data clustering

    No full text
    Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, vol. 381).In this work, we propose a novel nonparametric Bayesian method for clustering of data with spatial interdependencies. Specifically, we devise a novel normalized Gamma process, regulated by a simplified (pointwise) Markov random field (Gibbsian) distribution with a countably infinite number of states. As a result of its construction, the proposed model allows for introducing spatial dependencies in the clustering mechanics of the normalized Gamma process, thus yielding a novel nonparametric Bayesian method for spatial data clustering. We derive an efficient truncated variational Bayesian algorithm for model inference. We examine the efficacy of our approach by considering an image segmentation application using a real-world dataset. We show that our approach outperforms related methods from the field of Bayesian nonparametrics, including the infinite hidden Markov random field model, and the Dirichlet process prio

    A Quantum-Statistical Approach Towards Robot Learning by Demonstration

    No full text
    Abstract—Statistical machine learning approaches have been in the epicenter of the ongoing research work in the field of robot learning by demonstration in the last years. One of the most successful methodologies used for this purpose is Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models, to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this work, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable to currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach. I
    corecore