27 research outputs found
A Survey of Systemic Risk Analytics
We provide a survey of 31 quantitative measures of systemic risk in the economics and finance literature, chosen to span key themes and issues in systemic risk measurement and management. We motivate these measures from the supervisory, research, and data perspectives in the main text and present concise definitions of each risk measureâincluding required inputs, expected outputs, and data requirementsâin an extensive Supplemental Appendix. To encourage experimentation and innovation among as broad an audience as possible, we have developed an open-source MatlabÂź library for most of the analytics surveyed, which, once tested, will be accessible through the Office of Financial Research (OFR) at http://www.treasury.gov/initiatives/wsr/ofr/Pages/default.aspx.United States. Dept. of the Treasury. Office of Financial ResearchMassachusetts Institute of Technology. Laboratory for Financial EngineeringNational Science Foundation (U.S.) (Grant ECCS-1027905
Estimating the NIH Efficient Frontier
Background:
The National Institutes of Health (NIH) is among the worldâs largest investors in biomedical research, with a mandate to: ââŠlengthen life, and reduce the burdens of illness and disability.â Its funding decisions have been criticized as insufficiently focused on disease burden. We hypothesize that modern portfolio theory can create a closer link between basic research and outcome, and offer insight into basic-science related improvements in public health. We propose portfolio theory as a systematic framework for making biomedical funding allocation decisionsâone that is directly tied to the risk/reward trade-off of burden-of-disease outcomes.
Methods and Findings:
Using data from 1965 to 2007, we provide estimates of the NIH âefficient frontierâ, the set of funding allocations across 7 groups of disease-oriented NIH institutes that yield the greatest expected return on investment for a given level of risk, where return on investment is measured by subsequent impact on U.S. years of life lost (YLL). The results suggest that NIH may be actively managing its research risk, given that the volatility of its current allocation is 17% less than that of an equal-allocation portfolio with similar expected returns. The estimated efficient frontier suggests that further improvements in expected return (89% to 119% vs. current) or reduction in risk (22% to 35% vs. current) are available holding risk or expected return, respectively, constant, and that 28% to 89% greater decrease in average years-of-life-lost per unit risk may be achievable. However, these results also reflect the imprecision of YLL as a measure of disease burden, the noisy statistical link between basic research and YLL, and other known limitations of portfolio theory itself.
Conclusions:
Our analysis is intended to serve as a proof-of-concept and starting point for applying quantitative methods to allocating biomedical research funding that are objective, systematic, transparent, repeatable, and expressly designed to reduce the burden of disease. By approaching funding decisions in a more analytical fashion, it may be possible to improve their ultimate outcomes while reducing unintended consequences
Applications of optimal portfolio management
Thesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2015.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 183-188).This thesis revolves around applications of optimal portfolio theory. In the first essay, we study the optimal portfolio allocation among convergence trades and mean reversion trading strategies for a risk averse investor who faces Value-at-Risk and collateral constraints with and without fear of model misspecification. We investigate the properties of the optimal trading strategy, when the investor fully trusts his model dynamics. Subsequently, we investigate how the optimal trading strategy of the investor changes when he mistrusts the model. In particular, we assume that the investor believes that the data will come from an unknown member of a set of unspecified alternative models near his approximating model. The investor believes that his model is a pretty good approximation in the sense that the relative entropy of the alternative models with respect to his nominal model is small. Concern about model misspecification leads the investor to choose a robust optimal portfolio allocation that works well over that set of alternative models. In the second essay, we study how portfolio theory can be used as a framework for making biomedical funding allocation decisions focusing on the National Institutes of Health (NIH). Prioritizing research efforts is analogous to managing an investment portfolio. In both cases, there are competing opportunities to invest limited resources, and expected returns, risk, correlations, and the cost of lost opportunities are important factors in determining the return of those investments. Can we apply portfolio theory as a systematic framework of making biomedical funding allocation decisions? Does NIH manage its research risk in an efficient way? What are the challenges and limitations of portfolio theory as a way of making biomedical funding allocation decisions? Finally in the third essay, we investigate how risk constraints in portfolio optimization and fear of model misspecification affect the statistical properties of the market returns. Risk sensitive regulation has become the cornerstone of international financial regulations. How does this kind of regulation affect the statistical properties of the financial market? Does it affect the risk premium of the market? What about the volatility or the liquidity of the market?by Dimitrios Bisias.Ph. D
Appropriations data.
<p>NIH appropriations in real (2005) dollars, categorized by disease group (<a href="http://www.nih.gov/about/budget.htm" target="_blank">http://www.nih.gov/about/budget.htm</a>).</p
Efficient frontiers.
<p>Efficient frontiers for (a) all groups except HIV and AMS, ; (b) all groups except HIV and AMS, ; (c) all groups except HIV and AMS without the dementia effect, ; and (d) all groups except HIV and AMS without the dementia effect, ; based on historical ROI from 1980 to 2003. The region labeled âDPâ indicates portfolios that dominate the historical average NIH portfolio.</p
Relative performance.
<p>Relative volatility (Ï), expected return (”) and risk-adjusted returns (”/Ï) for different scenarios (see text) for both and 5 compared, including dementia: NIH with uniform allocation, and scenarios with NIH historical performance. A value of 1.00 implies the same performance, 0.92 implies 8% worse, while 1.12 implies 12% improvement.</p
Portfolio weights.
<p>Benchmark, single- and dual-objective optimal portfolio weights (in percent), based on historical ROI from 1980 to 2003.</p