55 research outputs found

    Inhibition of Connexin43 hemichannels impairs spatial short-term memory without affecting spatial working memory

    Get PDF
    Astrocytes are active players in higher brain function as they can release gliotransmitters, which are essential for synaptic plasticity. Various mechanisms have been proposed for gliotransmission, including vesicular mechanisms as well as non-vesicular ones, for example by passive diffusion via connexin hemichannels (HCs). We here investigated whether interfering with connexin43 (Cx43) HCs influenced hippocampal spatial memory. We made use of the peptide Gap19 that blocks HCs but not gap junction channels and is specific for Cx43. To this end, we microinfused transactivator of transcription linked Gap19 (TAT-Gap19) into the brain ventricle of male NMRI mice and assessed spatial memory in a Y maze. We found that the in vivo blockade of Cx43 HCs did not affect the locomotor activity or spatial working memory in a spontaneous alternation Y maze task. Cx43 blockade did however significantly impair the spatial short-term memory in a delayed spontaneous alternation Y maze task. These results indicate that Cx43 HCs play a role in spatial short-term memory

    Inhibition of astroglial connexin43 hemichannels with TAT-Gap19 exerts anticonvulsant effects in rodents

    Get PDF
    Accumulating evidence shows a key function for astrocytic connexin43 (Cx43) signaling in epilepsy. However, the lack of experimental distinction between Cx43 gap junction channels (GJCs) and hemichannels (HCs) has impeded the identification of the exact contribution of either channel configurations to epilepsy. We therefore investigated whether TAT-Gap19, a Cx mimetic peptide that inhibits Cx43 HCs but not the corresponding Cx43 GJCs, influences experimentally induced seizures in rodents. Dye uptake experiments in acute hippocampal slices of mice demonstrated that astroglial Cx43 HCs open in response to the chemoconvulsant pilocarpine and this was inhibited by TAT-Gap19. In vivo, pilocarpine-induced seizures as well as the accompanying increase in D-serine microdialysate levels were suppressed by Cx43 HC inhibition. Moreover, the anticonvulsant action of TAT-Gap19 was reversed by exogenous D-serine administration, suggesting that Cx43 HC inhibition protects against seizures by lowering extracellular D-serine levels. The anticonvulsive properties of Cx43 HC inhibition were further confirmed in electrical seizure mouse models, i.e. an acute 6 Hertz (Hz) model of refractory seizures and a chronic 6 Hz corneal kindling model. Collectively, these results indicate that Cx43 HCs play a role in seizures and underscore their potential as a novel and druggable target in epilepsy treatment

    Targeting the Ghrelin Receptor as a Novel Therapeutic Option for Epilepsy

    No full text
    Epilepsy is a neurological disease affecting more than 50 million individuals worldwide. Notwithstanding the availability of a broad array of antiseizure drugs (ASDs), 30% of patients suffer from pharmacoresistant epilepsy. This highlights the urgent need for novel therapeutic options, preferably with an emphasis on new targets, since “me too” drugs have been shown to be of no avail. One of the appealing novel targets for ASDs is the ghrelin receptor (ghrelin-R). In epilepsy patients, alterations in the plasma levels of its endogenous ligand, ghrelin, have been described, and various ghrelin-R ligands are anticonvulsant in preclinical seizure and epilepsy models. Up until now, the exact mechanism-of-action of ghrelin-R-mediated anticonvulsant effects has remained poorly understood and is further complicated by multiple downstream signaling pathways and the heteromerization properties of the receptor. This review compiles current knowledge, and discusses the potential mechanisms-of-action of the anticonvulsant effects mediated by the ghrelin-R

    Apparent Reconsolidation Interference Without Generalized Amnesia

    No full text
    Abstract Memories remain dynamic after consolidation, and when reactivated, they can be rendered vulnerable to various pharmacological agents that disrupt the later expression of memory (i.e., amnesia). Such drug-induced post-reactivation amnesia has traditionally been studied in AAA experimental designs, where a memory is initially created for a stimulus A (be it a singular cue or a context) and later reactivated and tested through exposure to the exact same stimulus. Using a contextual fear conditioning procedure in rats and midazolam as amnestic agent, we recently demonstrated that drug-induced amnesia can also be obtained when memories are reactivated through exposure to a generalization stimulus (GS, context B) and later tested for that same generalization stimulus (ABB design). However, this amnestic intervention leaves fear expression intact when at test animals are instead presented with the original training stimulus (ABA design) or a novel generalization stimulus (ABC design). The underlying mechanisms of post-reactivation memory malleability and of MDZ-induced amnesia for a generalization context remain largely unknown. Here, we evaluated whether, like typical CS-mediated (or AAA) post-reactivation amnesia, GS-mediated (ABB) post-reactivation amnesia displays key features of a destabilization-based phenomenon. We first show that ABB post-reactivation amnesia is critically dependent on prediction error at the time of memory reactivation and provide evidence for its temporally graded nature. In line with the known role of GluN2B-NMDA receptor activation in memory destabilization, we further demonstrate that pre-reactivation administration of ifenprodil, a selective antagonist of GluN2B-NMDA receptors, prevents MDZ-induced ABB amnesia. In sum, our data reveal that ABB MDZ-induced post-reactivation amnesia exhibits the hallmark features of a destabilization-dependent phenomenon. Implication of our findings for a reconsolidation-based account of post-reactivation amnesia are discussed.status: publishe

    Psychedelic-Induced Serotonin 2A Receptor Downregulation Does Not Predict Swim Stress Coping in Mice

    No full text
    Serotoninergic psychedelics such as psilocybin have been reported to elicit a long-lasting reduction in depressive symptoms. Although the main target for serotoninergic psychedelics, serotonin type 2A receptor (5-HT2A), has been established, the possible mechanism of the antidepressant action of psychedelics remains unknown. Using the mouse forced swim test model, we examined whether the administration of the synthetic serotoninergic psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI) would modulate 5-HT2A receptor levels in the medial prefrontal cortex (mPFC) and revert stress-induced changes in behavior. Mice subjected to swim stress developed a passive stress-coping strategy when tested in the forced swim test 6 days later. This change in behavior was not associated with the hypothesized increase in 5-HT2A receptor-dependent head twitch behaviors or consistent changes in 5-HT2A receptor levels in the mPFC. When DOI was administered 1 day before the forced swim test, a low dose (0.2 mg/kg i.p.) unexpectedly increased immobility while a high dose (2 mg/kg i.p.) had no significant effect on immobility. Nevertheless, DOI evoked a dose-dependent decrease in 5-HT2A levels in the mPFC of mice previously exposed to swim stress. Our findings do not support the hypothesis that the downregulation of 5-HT2A receptors in the mPFC contributes to the antidepressant-like properties of serotoninergic psychedelics

    Critical Evaluation of Acetylcholine Determination in Rat Brain Microdialysates using Ion-Pair Liquid Chromatography with Amperometric Detection

    Get PDF
    Liquid chromatography with amperometric detection remains the most widely used method for acetylcholine quantification in microdialysis samples. Separation of acetylcholine from choline and other matrix components on a microbore chromatographic column (1 mm internal diameter), conversion of acetylcholine in an immobilized enzyme reactor and detection of the produced hydrogen peroxide on a horseradish peroxidase redox polymer coated glassy carbon electrode, achieves sufficient sensitivity for acetylcholine quantification in rat brain microdialysates. However, a thourough validation within the concentration range required for this application has not been carried out before. Furthermore, a rapid degradation of the chromatographic columns and enzyme systems have been reported. In the present study an ion-pair liquid chromatography assay with amperometric detection was validated and its long-term stability evaluated. Working at pH 6.5 dramatically increased chromatographic stability without a loss in sensitivity compared to higher pH values. The lower limit of quantification of the method was 0.3 nM. At this concentration the repeatability was 15.7%, the inter-day precision 8.7% and the accuracy 103.6%. The chromatographic column was stable over 4 months, the immobilized enzyme reactor up to 2-3 months and the enzyme coating of the amperometric detector up to 1-2 months. The concentration of acetylcholine in 30 μl microdialysates obtained under basal conditions from the hippocampus of freely moving rats was 0.40 ± 0.12 nM (mean ± SD, n = 30). The present method is therefore suitable for acetylcholine determination in rat brain microdialysates

    Apparent reconsolidation interference without generalized amnesia.

    No full text
    Memories remain dynamic after consolidation, and when reactivated, they can be rendered vulnerable to various pharmacological agents that disrupt the later expression of memory (i.e., amnesia). Such drug-induced post-reactivation amnesia has traditionally been studied in AAA experimental designs, where a memory is initially created for a stimulus A (be it a singular cue or a context) and later reactivated and tested through exposure to the exact same stimulus. Using a contextual fear conditioning procedure in rats and midazolam as amnestic agent, we recently demonstrated that drug-induced amnesia can also be obtained when memories are reactivated through exposure to a generalization stimulus (GS, context B) and later tested for that same generalization stimulus (ABB design). However, this amnestic intervention leaves fear expression intact when at test animals are instead presented with the original training stimulus (ABA design) or a novel generalization stimulus (ABC design). The underlying mechanisms of post-reactivation memory malleability and of MDZ-induced amnesia for a generalization context remain largely unknown. Here, we evaluated whether, like typical CS-mediated (or AAA) post-reactivation amnesia, GS-mediated (ABB) post-reactivation amnesia displays key features of a destabilization-based phenomenon. We first show that ABB post-reactivation amnesia is critically dependent on prediction error at the time of memory reactivation and provide evidence for its temporally graded nature. In line with the known role of GluN2B-NMDA receptor activation in memory destabilization, we further demonstrate that pre-reactivation administration of ifenprodil, a selective antagonist of GluN2B-NMDA receptors, prevents MDZ-induced ABB amnesia. In sum, our data reveal that ABB MDZ-induced post-reactivation amnesia exhibits the hallmark features of a destabilization-dependent phenomenon. Implication of our findings for a reconsolidation-based account of post-reactivation amnesia are discussed.status: Published onlin
    corecore