4,173 research outputs found

    Constraining the origin of the planetary debris surrounding ZTF J0139+5245 through rotational fission of a triaxial asteroid

    Get PDF
    White dwarfs containing orbiting planetesimals or their debris represent crucial benchmarks by which theoretical investigations of post-main-sequence planetary systems may be calibrated. The photometric transit signatures of likely planetary debris in the ZTF J0139+5245 white dwarf system have an orbital period of about 110 d. An asteroid which breaks up to produce this debris may spin itself to destruction through repeated close encounters with the star without entering its Roche radius and without influence from the white dwarf’s luminosity. Here, we place coupled constraints on the orbital pericentre (q) and the ratio (β) of the middle to longest semiaxes of a triaxial asteroid which disrupts outside of this white dwarf’s Roche radius (rRoche) soon after attaining its 110-d orbit. We find that disruption within tens of years is likely when β ≲ 0.6 and q ≈ 1.0–2.0rRoche, and when β ≲ 0.2 out to q ≈ 2.5rRoche. Analysing the longer time-scale disruption of triaxial asteroids around ZTF J0139+5245 is desirable but may require either an analytical approach relying on ergodic theory or novel numerical techniques

    Instructor perspectives on iteration during upper-division optics lab activities

    Full text link
    Although developing proficiency with modeling is a nationally endorsed learning outcome for upper-division undergraduate physics lab courses, no corresponding research-based assessments exist. Our longterm goal is to develop assessments of students' modeling ability that are relevant across multiple upper-division lab contexts. To this end, we interviewed 19 instructors from 16 institutions about optics lab activities that incorporate photodiodes. Interviews focused on how those activities were designed to engage students in some aspects of modeling. We find that, according to many interviewees, iteration is an important aspect of modeling. In addition, interviewees described four distinct types of iteration: revising apparatuses, revising models, revising data-taking procedures, and repeating data collection using existing apparatuses and procedures. We provide examples of each type of iteration, and discuss implications for the development of future modeling assessments.Comment: 4 pages, 1 figure; under revie

    Access to undergraduate research experiences at a large research university

    Full text link
    The American Physical Society recently released a statement calling on all university physics departments to provide or facilitate access to research experiences for all undergraduate students. In response, we investigated the current status of access to undergraduate research at University of Colorado Boulder (CU), a large research institution where the number of undergraduate physics majors outnumber faculty by roughly ten to one. We created and administered two surveys within CU's Physics Department: one probed undergraduate students' familiarity with, and participation in, research; the other probed faculty members' experiences as research mentors to undergraduates. We describe the development of these instruments, our results, and our corresponding evidence-based recommendations for improving local access to undergraduate research experiences. Reflecting on our work, we make several connections to an institutional change framework and note how other universities and colleges might adapt our process.Comment: 4 pages, 3 figures, 1 table; Submitted to 2015 PERC Proceeding

    Student ownership of projects in an upper-division optics laboratory course: A multiple case study of successful experiences

    Full text link
    We investigate students' sense of ownership of multiweek final projects in an upper-division optics lab course. Using a multiple case study approach, we describe three student projects in detail. Within-case analyses focused on identifying key issues in each project, and constructing chronological descriptions of those events. Cross-case analysis focused on identifying emergent themes with respect to five dimensions of project ownership: student agency, instructor mentorship, peer collaboration, interest and value, and affective responses. Our within- and cross-case analyses yielded three major findings. First, coupling division of labor with collective brainstorming can help balance student agency, instructor mentorship, and peer collaboration. Second, students' interest in the project and perceptions of its value can increase over time; initial student interest in the project topic is not a necessary condition for student ownership of the project. Third, student ownership is characterized by a wide range of emotions that fluctuate as students alternate between extended periods of struggle and moments of success while working on their projects. These findings not only extend the literature on student ownership into a new educational domain---namely, upper-division physics labs---they also have concrete implications for the design of experimental physics projects in courses for which student ownership is a desired learning outcome. We describe the course and projects in sufficient detail that others can adapt our results to their particular contexts.Comment: 22 pages, 3 tables, submitted to Phys. Rev. PE

    Using think-aloud interviews to characterize model-based reasoning in electronics for a laboratory course assessment

    Full text link
    Models of physical systems are used to explain and predict experimental results and observations. The Modeling Framework for Experimental Physics describes the process by which physicists revise their models to account for the newly acquired observations, or change their apparatus to better represent their models when they encounter discrepancies between actual and expected behavior of a system. While modeling is a nationally recognized learning outcome for undergraduate physics lab courses, no assessments of students' model-based reasoning exist for upper-division labs. As part of a larger effort to create two assessments of students' modeling abilities, we used the Modeling Framework to develop and code think-aloud problem-solving activities centered on investigating an inverting amplifier circuit. This study is the second phase of a multiphase assessment instrument development process. Here, we focus on characterizing the range of modeling pathways students employ while interpreting the output signal of a circuit functioning far outside its recommended operation range. We end by discussing four outcomes of this work: (1) Students engaged in all modeling subtasks, and they spent the most time making measurements, making comparisons, and enacting revisions; (2) Each subtask occurred in close temporal proximity to all over subtasks; (3) Sometimes, students propose causes that do not follow logically from observed discrepancies; (4) Similarly, students often rely on their experiential knowledge and enact revisions that do not follow logically from articulated proposed causes.Comment: 18 pages, 5 figure

    Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations

    Get PDF
    We have implemented the sweep algorithm for the variational optimization of SU(2) x U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab-initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit.Comment: Submitted to J. Chem. Phy
    • …
    corecore