73 research outputs found

    Reducing Validity in Epistemic ATL to Validity in Epistemic CTL

    Full text link
    We propose a validity preserving translation from a subset of epistemic Alternating-time Temporal Logic (ATL) to epistemic Computation Tree Logic (CTL). The considered subset of epistemic ATL is known to have the finite model property and decidable model-checking. This entails the decidability of validity but the implied algorithm is unfeasible. Reducing the validity problem to that in a corresponding system of CTL makes the techniques for automated deduction for that logic available for the handling of the apparently more complex system of ATL.Comment: In Proceedings SR 2013, arXiv:1303.007

    Refining and Delegating Strategic Ability in ATL

    Full text link
    We propose extending Alternating-time Temporal Logic (ATL) by an operator <i refines-to G> F to express that agent i can distribute its powers to a set of sub-agents G in a way which satisfies ATL condition f on the strategic ability of the coalitions they may form, possibly together with others agents. We prove the decidability of model-checking of formulas whose subformulas with this operator as the main connective have the form ...<i_m refines-to G_m> f, with no further occurrences of this operator in f.Comment: In Proceedings SR 2014, arXiv:1404.041

    Probabilistic Interval Temporal Logic and Duration Calculus with Infinite Intervals: Complete Proof Systems

    Full text link
    The paper presents probabilistic extensions of interval temporal logic (ITL) and duration calculus (DC) with infinite intervals and complete Hilbert-style proof systems for them. The completeness results are a strong completeness theorem for the system of probabilistic ITL with respect to an abstract semantics and a relative completeness theorem for the system of probabilistic DC with respect to real-time semantics. The proposed systems subsume probabilistic real-time DC as known from the literature. A correspondence between the proposed systems and a system of probabilistic interval temporal logic with finite intervals and expanding modalities is established too.Comment: 43 page

    Gabbay Separation for the Duration Calculus

    Get PDF

    On the completeness and decidability of duration calculus with iteration

    Get PDF
    AbstractThe extension of the duration calculus (DC) by iteration, which is also known as Kleene star, enables the straightforward specification of repetitive behaviour in DC and facilitates the translation of design descriptions between DC, timed regular expressions and timed automata. In this paper we present axioms and a proof rule about iteration in DC. We consider abstract-time DC and its extension by a state-variable binding existential quantifier known as higher-order DC (HDC). We show that the ω-complete proof systems for DC and HDC known from our earlier work can be extended by our axioms and rule in various ways in order to axiomatise iteration completely. The additions we propose include either the proof rule or an induction axiom. We also present results on the decidability of a subset of the extension DC* of DC by iteration

    Model-Checking an Alternating-time Temporal Logic with Knowledge, Imperfect Information, Perfect Recall and Communicating Coalitions

    Full text link
    We present a variant of ATL with distributed knowledge operators based on a synchronous and perfect recall semantics. The coalition modalities in this logic are based on partial observation of the full history, and incorporate a form of cooperation between members of the coalition in which agents issue their actions based on the distributed knowledge, for that coalition, of the system history. We show that model-checking is decidable for this logic. The technique utilizes two variants of games with imperfect information and partially observable objectives, as well as a subset construction for identifying states whose histories are indistinguishable to the considered coalition

    A Generalized Hybrid Hoare Logic

    Full text link
    Deductive verification of hybrid systems (HSs) increasingly attracts more attention in recent years because of its power and scalability, where a powerful specification logic for HSs is the cornerstone. Often, HSs are naturally modelled by concurrent processes that communicate with each other. However, existing specification logics cannot easily handle such models. In this paper, we present a specification logic and proof system for Hybrid Communicating Sequential Processes (HCSP), that extends CSP with ordinary differential equations (ODE) and interrupts to model interactions between continuous and discrete evolution. Because it includes a rich set of algebraic operators, complicated hybrid systems can be easily modelled in an algebra-like compositional way in HCSP. Our logic can be seen as a generalization and simplification of existing hybrid Hoare logics (HHL) based on duration calculus (DC), as well as a conservative extension of existing Hoare logics for concurrent programs. Its assertion logic is the first-order theory of differential equations (FOD), together with assertions about traces recording communications, readiness, and continuous evolution. We prove continuous relative completeness of the logic w.r.t. FOD, as well as discrete relative completeness in the sense that continuous behaviour can be arbitrarily approximated by discretization. Besides, we discuss how to simplify proofs using the logic by providing a simplified assertion language and a set of sound and complete rules for differential invariants for ODEs. Finally, we implement a proof assistant for the logic in Isabelle/HOL, and apply it to verify two case studies to illustrate the power and scalability of our logic
    • …
    corecore