
Theoretical Computer Science 337 (2005) 278–304
www.elsevier.com/locate/tcs

On the completeness and decidability of duration
calculus with iteration�

Dimitar P. Gueleva,∗, Dang Van Hungb
aInstitute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria

bUnited Nations University, International Institute for Software Technology, P.O. Box 3058, Macau

Received 25 June 2003; received in revised form 14 January 2005; accepted 21 January 2005

Communicated by M. Ito

Abstract

The extension of the duration calculus (DC) byiteration, which is also known asKleene star,
enables the straightforward specification of repetitive behaviour in DC and facilitates the translation
of design descriptions between DC, timed regular expressions and timed automata. In this paper we
present axioms and a proof rule about iteration in DC.We consider abstract-time DC and its extension
by a state-variable binding existential quantifier known as higher-order DC (HDC). We show that the
�-complete proof systems for DC and HDC known from our earlier work can be extended by our
axioms and rule in various ways in order to axiomatise iteration completely. The additions we propose
include either the proof rule or an induction axiom. We also present results on the decidability of a
subset of the extension DC∗ of DC by iteration.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Real-time systems; Formal methods; Duration calculus; Completeness; Decidability

0. Introduction

The duration calculus(DC) was introduced by Zhou et al.[41] as a logic to specify
requirements on real-time systems. DC is a first-order classical interval-based real-time

� This paper supercedes the paper “Completeness and Decidability of a Fragment of Duration Calculus with
Iteration”, Lecture Notes in Computer Science, Vol. 1742, Springer, Berlin, 1999, pp. 139–150.

∗ Corresponding author.
E-mail addresses:gelevdp@math.bas.bg(D.P. Guelev),dvh@iist.unu.edu(Dang Van Hung).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.01.017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82177481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:gelevdp@math.bas.bg
mailto:dvh@iist.unu.edu

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 279

logic with one normal binary modality known aschop. It was developed by augmenting
the real-time variant of interval temporal logic (ITL,[25,26]), with boolean expressions
for stateand real-valued terms to denote statedurations. DC has been used successfully in
many case studies such as [4,7,21,30,34–36,37]. We refer the reader to [18] or the recent
monograph [39] for a comprehensive introduction to DC.
DC was originally introduced for real time. Variants of DC have been developed for

discrete time, combinations of real time and discrete time [29,19] and abstract time [10,14],
where an arbitrary (commutative) linearly ordered group can be the model of time. Real-
and discrete-time semantics are best suited for applications. Themore general abstract-time
semantics gives some technical advantages for theoretical studies.
Iteration, also known asKleene star, was introduced to DC to facilitate the reasoning

about repetitive behaviour. Iteration is particularly important for the description of the
repetitivebehaviour of timedautomata inDC. It facilitates the translationof designsbetween
timed regular expressions, timed automata and DC. DC∗ stands for the extension of DC
by iteration. In [7] we developed a method for designing real-time hybrid systems from
specifications written using a subset of DC∗ which consists of the so-calledsimpleDC∗
formulas. Simple DC∗ formulas are sufficient to describe the behaviour of timed automata.
One can reason about the correctness of designs in terms of the semantics of DC∗. However,
it would be more practical and interesting to be able to prove correctness syntactically. This
requires the development of a proof system for DC∗.
A Hilbert-style proof system for DC (without iteration) was first presented in [16]. This

proof system was shown to be complete for real-time DC relative to real-time ITL. Validity
in DC is not recursively enumerable and therefore no finitary complete proof system for
DC exists. A small non-recursively enumerable subset of DC was presented in [15]. The�-
completeness of a system with an�-rule for abstract-time DC was shown in [10]. In [13] it
was shown that by adding a few axioms and (finitary) rules the scope of the�-completeness
of the system from [10] can be extended to DC with quantification over state as introduced
in [28] also known as higher-order DC (HDC or HODC, see [38], where HDC has other
useful features such as neighbourhood values [42] and super-dense chop [17] which we
omit here.)
In this paper, we study the deductive power of three groups of axioms and a rule for

iteration in DC which we add to a variant of the�-complete proof system from [10]. The
first group of axioms has been obtained from the axioms about Kleene star in propositional
dynamic logic (PDL, cf. e.g. [1]). It contains an induction axiom. This group was presented
in the precursor of this paper [5]. Some examples which demonstrate the working of this
group of axioms can be found in [20]. The second group contains an induction axiom too.
Unlike the first, its induction axiom is the instance about iteration of an axiom about the
general least fixed point operator� which was introduced to DC in [28] and later studied
in [12]. This axiom corresponds toPark’s ruleas known from the modal�-calculus [22].
This rule was formulated for DC in [28] too. The third group has a proof rule instead of
an induction axiom. Unlike the induction axioms, which are examples of a general pattern
occurring in the axiomatisation of Kleene star in other logics, that proof rule refers to
the DC-specific notion of state and its deductive power stems from the finite variability
requirement which is imposed on state in DC. The idea behind this rule was earlier used in
[15] to express a finite variability requirement on propositional temporal letters in DC.

280 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

Fig. 1. A simple gas burner design.

We show that adding our third group of axioms,which includes the proof rule, to the proof
system from[10] leads to an�-complete proof system for DC∗. We show that iteration is
definable in HDC and the correctness of the definition can be proved in the extension of an
�-complete proof system for HDC by the second group of axioms. We show that there is a
straightforward correspondence between the induction axiom of that second group and the
induction axiom of the first group.
To illustrate the working of our axioms, we employ the well-known simple gas burner

example taken from [41]. The DC formula

S ⇀↽ �(� > 60⇒ (20
∫
leak��)) (1)

specifies that a gas burner can be in theleakstate for nomore than one-twentieth of the time
in any time interval that is at least 1min long. Consider the gas burner design described by
the real-time automaton shown on Fig.1. We assume thatleakis the initial state for the sake
of simplicity. In this designleakbecomes detected within 1 s and leaks are separated by at
least 30 s. This can be specified by the DC∗ formula

D ⇀↽ ((��leak�� ∧ ��1)
(��nonleak�� ∧ ��30))∗. (2)

In Section6 we give a proof ofD ⇒ S by means of our axioms about iteration.
Both SandD aresimpleDC∗ formulas. Validity is decidable for such formulas. This

implies that whether a design written in simple DC∗ is implementable can be decided
algorithmically. Furthermore, the validity of implications from simple DC∗ formulas to DC
formulas of certain forms such as linear duration invariants (see [6,24,43]) can be checked
by a simple algorithm.

0.1. Structure of the paper

After a brief introduction to DC and its extensions by iteration and state variable binding
quantifier we present our axioms and rule about iteration and show that adding some of
these to a complete proof system for DC without iteration leads to a complete proof system
for DC∗. Next we show that the proof rule can be replaced by each of the proposed induction
axioms in a complete proof system for HDC, where iteration can also be defined explicitly.
We illustrate the working of the proof rule by giving derivations of the alternative induction
axioms and show how one of them can be derived using the other. We show how the explicit
definition of iteration in HDC can be derived from our axioms about iteration and the
state variable binding quantifier too. In a separate short section we explain how one of the
proposed induction axioms can be obtained by translating a PDL induction axiom into DC.

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 281

We derive some other interesting DC∗ theorems in our system to illustrate its working too,
and use one of them in a proof ofD ⇒ S about the gas burner design. Finally, we discuss
work on the axiomatisation of iteration in related systems, summarise some decidability
results about the subset of DC∗ known assimpleDC∗ which have been obtained either
independently or using connections with timed regular expressions and timed automata,
and make some concluding remarks.

1. Preliminaries on the duration calculus

Here follows the formal definition of DC.

1.1. Language

A DC vocabularyconsists ofconstant symbolsc, d, . . ., individual variablesx, y, z, . . .,
state variablesP,Q, . . ., temporal variablesv, . . ., function symbolsf, g, . . ., relation
symbolsR, . . . and temporal propositional lettersA,B, The constant 0, addition+
equality= and the temporal variable� are mandatory in DC vocabularies.
Given a vocabulary, the definition of a DC language is essentially that of its sets of

state expressions S, terms tand formulas�. These sets can be defined by the following
BNFs:

S::= 0 | P | ¬S | S ∨ S,

t ::= c | x | v | ∫ S | f (t, . . . , t),
� ::=A | R(t, . . . , t) | ¬� | (� ∨ �) | (�
�) | ∃x�.
Terms and formulas with no occurrences of
 (chop), nor of temporal variables, nor of∫
, are calledrigid.
The set of the variables which have free occurrences in a formula� is denoted byFV (�).

For sets of formulas�, FV (�) is defined as
⋃

�∈� FV (�). The state variables occurring
freely in a formula� are assumed to be inFV (�) too. All occurrences of state variables
are free in DC, but not in HDC.

1.2. Semantics

Our completeness results about DC∗ apply to the abstract semantics which was defined
for DC in [10] after the semantics of ITL from [8]. The linearly ordered set of the reals is
the model of time in the original semantics of DC. The durations of real-time intervals are
non-negative reals with ordinary arithmetic on them in that semantics. In the abstract-time
case the durations form the monoid of the positive elements of some linearly ordered group
[32], and the time domain is isomorphic to a possibly unbounded interval in the same group.
Here follow the detailed definitions.

Definition 1. A time domainis a linearly ordered set〈T , �〉.

〈R, �〉, 〈Z, �〉 and〈N, �〉 are examples of time domains.

282 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

Definition 2. Given a time domain〈T , �〉, we denote the set
{[t1, t2] : t1, t2 ∈ T , t1� t2}

of the closed and bounded intervals inT by I (T).

We use (and) to mark open ends of time intervals, for instance,[t1, t2) stands for the
semi-open interval{t ∈ T : t1� t < t2}.

Definition 3. A duration domainis a system of the type〈D,+(2),0(0)〉 which satisfies the
axioms

(D1) x + (y + z) = (x + y)+ z;
(D2) x + 0= 0+ x = x;
(D3) x + y = x + z ⇒ y = z, x + z = y + z ⇒ x = y;
(D4) x + y = 0⇒ x = y = 0;
(D5) ∃z(x + z = y ∨ y + z = x), ∃z(z+ x = y ∨ z+ y = x).

For example,〈R+,+,0〉 and〈N,+,0〉 are duration domains, but〈Z,+,0〉 is not, because
it violates D4. The axioms D1–D5 do not imply commutativity of+ (cf. e.g.[32]). How-
ever, to our knowledge, all practically relevant duration domains are commutative. Adding
commutativity to D1–D5 affects neither the validity, nor the proofs of the results in this
paper. In the sequel we assume that duration domains are linearly ordered by the relation

x�y ⇀↽ ∃z(x + z = y). (3)

We regard� as a mandatory symbol in DC with (3) being its definition.

Definition 4. Given a time domain〈T , �〉, and a duration domain〈D,+,0〉,m : I (T)→D

is a measure if it satisfies the axioms

(M1) m([�1, �2]) = m([�1, �′2]) ⇒ �2 = �′2;
(M2) m([�1, �])+m([�, �2]) = m([�1, �2]);
(M3) m([�1, �2]) = x + y ⇒ ∃�(m([�1, �]) = x).

Definition 5. An abstractDC frame is a tuple of the formF = 〈〈T , �〉, 〈D,+,0〉,m〉,
where〈T , �〉 is a time domain,〈D,+,0〉 is a duration domain, andm : I (T) → D is a
measure.

The existence of a measurem : I (T) → D clearly imposes restrictions on〈T , �〉. Some
linearly ordered sets do not admit such a measure for any duration domain.

Definition 6. GivenaDCvocabularyL andanabstractDC frameF = 〈〈T , �〉, 〈D,+,0〉,
m〉, aninterpretation ofL into F is amappingI of L which satisfies the following conditions:

I (c), I (x) ∈ D for constant symbolsc and individual variablesx;
I (f) : Dn → D for n-place function symbolsf ;

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 283

I (v) : I (T) → D for temporal variablesv;
I (R) : Dn → {0,1} for n-place relation symbolsR;
I (P) : T → {0,1} for state variablesP ;
I (A) : I (T) → {0,1} for temporal propositional lettersA.
I (0) = 0, I (+) = +, I (=) is = andI (�) = m.

The followingcondition, knownasfinite variability of state, is imposedon the interpretations
of state variables:

For every[�1, �2] ∈ I (T) such that�1 < �2, and every state variableP there exist
�′1, . . . , �′n ∈ T such that�1 = �′1 < · · · < �′n = �2 andI (P) is constant on the
semi-open intervals[�′i , �′i+1), i = 1, . . . , n− 1.

Finite variability can be defined as piece-wise continuity ofI (P) in the real-time case. This
is less restrictive but leads to the same notion of validity in DC.

Definition 7. Given DC vocabularyL , a DCabstract model forL is a tuple of the form
M = 〈F, I 〉 whereF is a DC abstract frame, andI is aninterpretationof L into F.

Definition 8. Let sbe in some DC vocabularyL . InterpretationsI andJ of L into the same
abstract frame are said tos-agree, if I (s′) = J (s′) for all s′ in L , except possiblys.

Given intervals�1 and�2 in the same time domain, we denote�1 ∪ �2 by �1
�2, in case
max�1 = min�2. This use of
 in our meta-language is related but formally different from
its use in DC formulas. Since
 is associative, we omit parentheses in expressions with
consecutive occurrences of
.

Definition 9. Let 〈F, I 〉 be an abstract DC model,F = 〈〈T , �〉, 〈D,+,0〉,m〉 and
� ∈ T . Then the valuesI�(S) of state expressionsS in the vocabulary ofI are defined by
the clauses:

I�(0) = 0,

I�(P) = I (P)(�) for state variablesP,

I�(¬S) = 1− I�(S),

I�(S1 ∨ S2) = max(I�(S1), I�(S2)).

Given an interval� ∈ I (T), the valuesI�(t) of termst are defined by the clauses:

I�(c) = I (c) for constant symbolsc,

I�(x) = I (x) for individual variablesx,

I�(v) = I (v)(�) for temporal variablesv,

I�(
∫
S) = ∫ max�

min� I�(S)d� for state expressionsS,

I�(f (t1, . . . , tn)) = I (f)(I�(t1), . . . , I�(tn)) for n-place function symbolsf.

284 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

To define
∫ max�
min� I�(S)d�, let n < � and�1, . . . ,�n ∈ I (T) be such that� = �1
· · ·
�n,

andI�(S) is constant for� ∈ [min�i ,max�i), i = 1, . . . , n. Then∫ max�
min� I�(S)d� = ∑

i=1,...,n, Imin�i (S)=1
m(�i).

Clearly, this value does not depend on the precise choice of�1, . . . ,�n. The modelling
relation � is defined by the clauses:
〈F, I 〉,� /� ⊥
〈F, I 〉,� � A iff I (A)(�) = 1 for temporal propositional lettersA
〈F, I 〉,� � R(t1, . . . , tn) iff I (R)(I�(t1), . . . , I�(tn)) = 1
〈F, I 〉,� � ¬� iff 〈F, I 〉,� /� �

〈F, I 〉,� � (� ∨ �) iff either 〈F, I 〉,� � � or 〈F, I 〉,� � �

〈F, I 〉,� � (�
�) iff 〈F, I 〉,�1 � � and〈F, I 〉,�2 � �

for some�1,�2 ∈ I (TF) such that�1
�2 = �
〈F, I 〉,� � ∃x� iff 〈F, J 〉,��� for someJ which x-agrees withI.

Sometimes it is convenient to work with the set of intervals which satisfy a formula. Let
〈F, I 〉 be a DC model whereF = 〈〈T , �〉, 〈D,+,0〉,m〉. Then we denote the set

{� ∈ I (T) : 〈F, I 〉,� � �}
by Ĩ (�). LetX, Y ⊆ I (T). ThenX
Y stands for the set

{�1
�2 : �1 ∈ X,�2 ∈ Y,max�1 = min�2}.

1.3. Abbreviations

The customaryinfix notation for+, � and= is used in DC.�, ∧,⇒ and⇔, ∀, =, � ,
< and> are used in the usual way.We assume that
binds less tightly than boolean connec-
tives. Since
 is associative, we omit parentheses in formulas with consecutive occurrences
of
. The following abbreviations are generally accepted in DC:

1⇀↽ ¬0
��S�� ⇀↽ ∫

S = � ∧ � = 0
♦� ⇀↽ �
�
� (there is a subinterval for which� holds)

�� ⇀↽ ¬♦¬� (for all subintervals� holds)

�0 ⇀↽ � = 0
�k ⇀↽ �
. . .
�︸ ︷︷ ︸

k times

for k > 0

The temporal variable� is often introduced as an abbreviation or
∫
1. As usual, we write

nt for t + · · · + t︸ ︷︷ ︸
n times

.

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 285

1.4. Iteration and quantification over state inDC

DC is extended by iteration and quantification over state by allowing formulas of the
forms�∗ and∃P� whereP is a state variable, respectively. The relation� is defined on
such formulas by the clauses:

〈F, I 〉,� � �∗ iff eitherm(�)=0,or there existn<� and�1, . . . ,�n ∈ I (TF)
such that�1
. . .
�n = � and〈F, I 〉,�i � � for i = 1, . . . , n,

〈F, I 〉,� � ∃P� iff 〈F, J 〉,� � � for someI whichP -agrees withJ.

Iteration∗ binds more tightly than
and the propositional connectives.

1.5. Proof systems forDC

Here we present the relatively complete proof system for DC from[16] and the�-
complete system from [10], because our newaxioms and rule about iteration are supposed to
work as additions to these systems. Next, we give the axioms and rules about quantification
over state in HDC. We use them together with our axioms about iteration to prove the
correctness of an explicit definition of iteration in HDC.
The Hilbert-style proof system for DC from [16] includes a proof system for first-order

logic with equality (cf. e.g. [31]), axioms and rules for ITL (cf. e.g. [7]) and some DC-
specific axioms and rules [16]. We assume that the readers are familiar with Hilbert-
style proof systems for first-order logic. Here follow the ITL- and DC-specific axioms
and rules.

1.5.1. Axioms and rules forITL

(A1) (�
�) ∧ ¬(�
�) ⇒ (� ∧ ¬�
�), (�
�) ∧ ¬(�
�) ⇒ (�
� ∧ ¬�)

(A2) ((�
�)
�) ⇔ (�
(�
�))

(R) (�
�) ⇒ �, (�
�) ⇒ � if � is rigid

(B) (∃x�
�) ⇒ ∃x(�
�), (�
∃x�) ⇒ ∃x(�
�) if x /∈ FV (�)

(L1) (� = x
�) ⇒ ¬(� = x
¬�), (�
� = x) ⇒ ¬(¬�
� = x)

(L2) � = x + y ⇔ (� = x
� = y)

(L3) � ⇒ (� = 0
�), � ⇒ (�
� = 0)
(N)

�
¬(¬�
�)

,
�

¬(�
¬�)

(Mono)
� ⇒ �

(�
�) ⇒ (�
�)
,

� ⇒ �
(�
�) ⇒ (�
�)

.

The presence of the modality
 and flexible symbols in ITL brings a restriction on the
use of first order logic rules and axioms which involve substitution:[t/x]� is allowed in
proofs only if no variable int becomes bound due to the substitution, and eithert is rigid
or
does not occur in�. It is known that the above proof system for ITL is complete with
respect to abstract-time models [8].

286 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

1.5.2.DC axioms and rules

(DC1)
∫
0= 0

(DC2)
∫
1= �

(DC3)
∫
S�0

(DC4)
∫
S1+

∫
S2 =

∫
(S1 ∨ S2)+

∫
(S1 ∧ S2)

(DC5) (
∫
S = x

∫
S = y) ⇒ ∫

S = x + y

(DC6)
∫
S1 =

∫
S2 if S1 andS2 are propositionally equivalent

(IR1)
[� = 0/A]� � ⇒ [A ∨ (A
��S�� ∨ ��¬S��)/A]�

[�/A]�
(IR2)

[� = 0/A]� � ⇒ [A ∨ (��S�� ∨ ��¬S��
A)/A]�
[�/A]�

(�)
��(��S�� ∨ ��¬S��)k ⇒ � for all k < �

���

The extension of the proof system for ITL by the axioms DC1–DC6 and the rules IR1
and IR2 is complete with respect to the real time based frame relative to the class of ITL
sentences which are valid in this frame[16]. Replacing IR1 and IR2 by the infinitary rule
� leads to an�-complete system for DC with respect to the class of the abstract time
based models [10], which are considered in this paper. The induction rules IR1 and IR2
are derivable in the system which consists of the ITL axioms and rules, DC1–DC6 and the
infinitary rule�. Despite that, IR1 and IR2 are preferable for practical purposes because
they are finitary. Note that DC3 is redundant in our setting.
The rule� is part of an�-complete proof system, and�-completeness is the equiv-

alence between the consistency and the satisfiability of sets of formulas. Consistency
means the impossibility to derive⊥ in the proof system from the given set of formu-
las, which may be infinite. Since DC is not a compact logic, derivability from infinite sets
and derivability from a finite sets differ substantially. That is why we put down the rule� in
the form

�� . . .

�� . . .
,

where� stands for a set of formulas, which may as well be infinite. We assume that other
proof rules included in the�-complete proof system have this form too. For instance, we
adopt the first-order logic left∃-introduction rule in the form

(∃l) � � ∃x� ⇒ �
� � � ⇒ �

,

wherex /∈ FV (�), FV (�).
Semantically,��� corresponds to

(∧
�
) ⇒ �, which may be impossible to write as a

single DC formula for infinite�.

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 287

1.5.3. Axioms about quantification over state inDC

(∃sr) [S/P]� ⇒ ∃P� whereS is a state expression;
(Bs) (∃P�
�) ⇒ ∃P(�
�), (�
∃P�) ⇒ ∃P(�
�) if P /∈ FV (�);
(
s) x = 0∨ ��x ∨ ∃P(��S1 ⇔ P �� ∧ � = x
��S2 ⇔ P ��);
(∃sl)

��� ⇒ �
��∃P� ⇒ �

, whereP /∈ FV (�), FV (�).

The meanings ofBs , ∃sr and∃sl are self-explanatory. The axiom
s states that, given two
statesS1 andS2 and a chopping point which is internal to the reference interval, there is a
stateP which equalsS1 on the left of the chopping point andS2 on the right. Recall here
that our definition of finite variability implies that states are right-continuous.

1.5.4.�-Completeness ofDC andHDC
A set� of DC (HDC) formulas is calledconsistent, if ⊥ cannot be derived from�,

and theorems of the above proof system for DC (HDC) using only the rulesMP and�.
Consistency in DC implies consistency in HDC, because it is a conservative extension of
DC. The�-completeness theorem for abstract-time DC is as follows:

Theorem 1(Guelev[10]). Let� be a consistent set ofDC formulas in some vocabulary
L . Then there exists an abstract model M forL and an interval� in its time domain such
thatM,��� for all � ∈ �.

The rule� facilitates the use of maximal consistent sets of formulas in the proof of
Theorem1. We use such sets to prove our completeness results for DC∗ and therefore the
proof systems we consider are extensions of the system including�. Theorem 1 applies to
the proof system for HDC which includes the axioms from Section 1.5.3 too [13].

2. Axioms and a rule about iteration inDC

We combine the axioms DC∗1–DC∗4 and the rule DC∗5 below into three groups. All the
groups include the axioms DC∗1 and DC∗2. Each group includes one of DC∗3, DC∗4 and
DC∗5.
(DC∗1) � = 0⇒ �∗,
(DC∗2) (�∗
�) ⇒ �.

The meanings of DC∗1 and DC∗2 are straightforward.

(DC∗3) (�∗ ∧ �
�) ⇒ (� ∧ � = 0
�) ∨ (((�∗ ∧ ¬�
�) ∧ �)
�),
To understand themeaning of DC∗3, assume that some initial subinterval�′ of the reference
interval� satisfies� and�∗. Then�′ can be represented as�′

1

. . .
�′

n wheren < � and
all the intervals	0 = [min�,min�] = [min�′,min�′], 	k = �′

1

. . .
�′

k, k = 1, . . . , n,
satisfy�∗, and	n satisfies� as well. Now depending on whether the leastk such that	k

288 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

satisfies� is 0 or not,� satisfies either the left or the right disjunctive member after⇒ in
DC∗3.

(DC∗4) �(� = 0∨ (�
�) ⇒ �) ⇒ (�∗ ⇒ �),

DC∗4 is an expression of the fact thatĨ (�∗) is the least set of time intervalsX ⊆ I (T)
which satisfies the inclusion

Ĩ (� = 0) ∪ Ĩ (�)
X ⊆ X.

To put down the rule DC∗5, we need the formula

f(�,Q) ⇀↽ ¬((�
��Q��) ∨ � = 0
��¬Q�� ∧ ¬�
(��Q��
�) ∨ � = 0).
This formula means that every maximal non-trivial subinterval of the reference interval
which satisfies��¬Q�� satisfies� too. Let

g(�, P) ⇀↽ f(�, P) ∧ f(�,¬P).
This formula means that all maximal non-trivial subintervals of the reference interval�
which satisfy either��P �� or ��¬P �� satisfy� too. Since these intervals form a finite partition
of �, if � satisfiesg(�, P), then it also satisfies�∗. Here follows the rule itself:

(DC∗5) � � (

g(�, P)
�) ⇒ �
� � (

�∗
�) ⇒ �

, whereP /∈ FV (� ∪ {�,�,
,�}).

To understand DC∗5, consider the simpler rule

� � g(�, P) ⇒ �
� � �∗ ⇒ �

, whereP /∈ FV (� ∪ {�,�})

which can be derived from the instance of DC∗5 with
 and� both being� = 0. As
mentioned above, if a reference interval� satisfiesg(�, P), then the time points at whichP
changes its value inside� partition it into subintervals which satisfy�, and therefore� itself
satisfies�∗. Given aconcreteinterpretation ofP, the points at whichP changes its value
define aconcretefinite partition of�, whereas for� to satisfy�∗ we just need theexistence
of such a partition. The role of the side conditionP /∈ FV (� ∪ {�,�}) is to handle this.
This side condition implies that the validity of

g(�, P) ⇒ � (4)

is equivalent to the validity of

∃Pg(�, P) ⇒ �. (5)

PuttingP in the scope of∃ gives exactly what needed, because� satisfies�∗ iff thereexists
a finite partition of� into subintervals each of which satisfies�, and a fresh state variable
P can always be chosen to change its value exactly at the dividing points of such a finite
partition. Hence the antecedent of (5) is equivalent to�∗. By putting down a proof rule
instead of the equivalence

∃Pg(�, P) ⇔ �∗, (6)

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 289

we axiomatise iteration in DC without resorting to the state variable binding quantifier.
Below we show how (6) can be proved in the system for HDC from Section 1 using the
axioms DC∗1, DC∗2 and DC∗4 about iteration.
Note that the scope of the soundness of DC∗1–DC∗4 is, in fact, the extension ITL∗ of

ITL by iteration, because these axioms involve no DC-specific constructs.

3. Completeness ofDC∗1, DC∗2 and DC∗5 for iteration in abstract-time DC∗

The�-completeness of the proof system for abstract-time DCwhich includes the axioms
and the rule� from Section 1.5.2 can be proved following the example from [10], which
on its turn builds on [8]. In this section, we prove that adding DC∗1, DC∗2 and DC∗5 to this
system leads to an�-complete proof system for abstract-time DC∗. The proof involves a
Lindenbaum lemma toextend thegivenconsistent set of formulas�0 toamaximal consistent
set� with appropriately chosen witnesses, the construction of a canonical modelM from
� and a truth lemma to prove that a distinguished interval inM satisfies all the formulas
from� and, consequently, from�0. The presence of iteration and DC∗1, DC∗2 and DC∗5
affects mostly the Lindenbaum lemma and the truth lemma. The rest of the completeness
proof is much like in [10] and therefore we skip most of the details.

3.1. Maximal consistent sets and the Lindenbaum lemma forDC∗

The use of amaximal consistent set of formulas in the completeness proof for a quantified
logic involvesHenkin constantsalso known aswitnessesfor the existential formulas in the
set. In the case of first-order predicate logic the only existential formulas are those in
which the quantifier binds an individual variable. A constantc is called awitnessfor the
existential formula∃x� in a set of formulas� if ∃x� ⇒ [c/x]� ∈ �. Along with the
first-order quantifier∃, DC∗ implicitly involves twomore kinds of existential formulas. The
finite variability requirement on state means that DC models validate the formula(∃k <

�)(��S��∨��¬S��)k for everystateexpressionS. Thedefinition (6)of iteration inHDC involves
the quantifier prefix∃P . We use maximal consistent sets which have witnesses for such
formulas, despite that they do not occur in DC∗ languages explicitly. These witnesses are
freely occurring state variables which therefore can be regarded as constants, and formulas
of the form(��S�� ∨ ��¬S��)k for concretek, respectively.

Definition 10. Let C be a set of constants and state variables. A set of DC∗ formulas�
written in some vocabularyL has witnesses in Cif for every existential formula∃x� ∈ �
there is a constantc ∈ C such that[c/x]� ∈ �, for every state expressionSwritten in
L there is ak < � such that(��S�� ∨ ��¬S��)k ∈ � and for every formula of the form
(

�∗
�) ∈ � there is a state variableP such that(

g(�, P)
�) ∈ �.

Lemma 1 (Lindenbaum lemma). LetL be a countableDCvocabulary and�0 be a consis-
tent set ofDC∗ formulas in this vocabulary. Let a set C consist of countably many constant
symbols and countably many state variables such thatC ∩ L = ∅. Then there exists a

290 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

maximal consistent set�⊂ �0 ofDC∗ formulas in the vocabularyL∪C which haswitnesses
in C.

Proof. This proof follows a general pattern known from numerous modal logics.
Let the set of all the DC∗ formulas written in the vocabularyL ∪ C be{�i : i < �} and

the set of all the state expressions fromL ∪C be{Sj : j < �}. We define the sequence�k,
k < � of consistent sets of such formulas by induction onk. �0 is as given in the theorem.
Since�0 consists of formulas inL and we obtain�k+1 by adding finitely many formulas
written in L ∪ C to �k for eachk, we can assume that there are both constants and state
variables inC which do not occur in�k for all k. To define the sequence�k, k < �, we
use a pair of functions	1,	2 : � → � such that for every pairi, j < � there is ak < �
satisfying	1(k) = i and	2(k) = j . Here follow the definition of�k for k > 0:
Assume that�k has been defined for somek < � and let i = 	1(k), j = 	2(k).

If �k ∪ {�i} is not consistent, then�k+1 = �k. Otherwise we consider the following
cases:
1. �i is the existential formula∃x�. Then we choose a constantc ∈ C such thatcdoes not
occur in the formulas from�k and put�k+1 = �k ∪ {�i , [c/x]�}. Assume that�k+1
is not consistent for the sake of contradiction. Then we have�k, ∃x��¬[c/x]�. Since
c occurs neither in�k, nor in�, replacing it by a fresh individual variabley will give
�k, ∃x��¬[y/x]� again. This, by an application of∃l , will bring �k, ∃x��∀y¬[y/x]�,
which is a contradiction.

2. �i is(

�∗
�). Thenwechooseastate variableP ∈ Cwhichdoesnot occur in�k∪{�i}

and put�k+1 = �k ∪ {�i , (

g(�, P)
�)}. Assuming that�k,�i�(

g(�, P)
�) ⇒
⊥ brings a contradiction by an application of the rule DC∗5. Hence�k+1 is consistent.

3. �i is �. Then we choose al < � such that�k ∪ {(��Sj �� ∨ ��¬Sj ��)l} is consistent
and put�k+1 = �k ∪ {(��Sj �� ∨ ��¬Sj ��)l}. Such anl exists because assuming that
�k�¬(��Sj ��∨��¬Sj ��)l for all l < � implies that�k itself is inconsistent byanapplication
of the infinitary rule�.

4. �i is of none of the above forms. Then we put�k+1 = �k ∪ {�i}.
Now let us prove that the union� =⋃

k<� �k is consistent, has witnesses inL ∪C and
either� ∈ � or ¬� ∈ � for every formula� written in L ∪ C, which implies that� is
maximal.
To prove that� is maximal, assume that� is a formula inL ∪ C and�,¬� /∈ � for the

sake of contradiction. Letk1, k2 < � be such that� is �	1(k1) and¬� is �	1(k2). Then,
by the definition of the sets�k, �max{k1,k2} is inconsistent with both� and¬�, which is a
contradiction.
The cases 1–3 of the inductive definition of the sequence�k clearly imply that� has

witnesses inC.
Since⊥ /∈ �k for all k,⊥ /∈ � as well. Hence, to establish the consistency of�, we just

need to prove that� contains all the theorems of our proof system written in the vocabulary
L ∪ C and is closed under the rulesMP and�. The only non-trivial part of this proof
is about the closedness under�. Let (��S�� ∨ ��¬S��)l ⇒ � ∈ � for all l < �. Let Sbe
Sj , k < � be such that	2(k) = j and�	1(k) is �. Then there is anl < � such that
(��Sj �� ∨ ��¬Sj ��)l ∈ �k+1 by the definition of this set, whence� ∈ �. �

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 291

We intend to use the set� whose existence was shown in Lemma1 to construct a model
M for the vocabularyL ∪ C so thatM satisfies the formulas from� at a distinguished
interval�. To define the interpretations of the symbols fromL ∪C at the subintervals of�,
we intend to use sets of formulas of the form

{� : ((� = c′
�) ∧ � = c′′
�) ∈ �} (7)

for appropriately chosen constantsc′, c′′ ∈ C.

Lemma 2. Let� be a maximal consistent set of formulas written in the vocabularyL ∪C

andc′ andc′′ be constants from C such thatc′�c′′ andc′′�� ∈ �. Then(7) is a maximal
consistent set in the vocabularyL ∪ C which has witnesses in C.

Proof. Let us denote the set (7) by�. For every formula� either ((� = c′
�) ∧ � =
c′′
�) ∈ � or ((� = c′
¬�) ∧ � = c′′
�) ∈ �. Hence for every� either� ∈ �
or ¬� ∈ � and therefore� is maximal. To realise that� has witnesses inC, note that
∃x� ∈ � is equivalent to∃x((� = c′
�) ∧ � = c′′
�) ∈ �, (

�∗
�) ∈ � is equivalent
to ((� = c′

)
�∗
(�
� = c′′′)) ∈ � for somec′′′ ∈ C such thatc′′ + c′′′ = � ∈ �, and
(��S�� ∨ ��¬S��)l ∈ � implies(��S�� ∨ ��¬S��)l′ ∈ � for somel′� l.⊥ /∈ � and therefore the
consistency of� follows from its closedness under the proof rules, which is established like
in the proof of Lemma 1. �

3.2. The canonical construction for abstract-timeDC∗

Let L andC be as in the previous section and� be a maximal consistent set of formulas
in the vocabularyL ∪ C with witnesses inC. Let

c1 ≡ c2 iff c1 = c2 ∈ �

for constantsc1, c2 ∈ C. Clearly,≡ is an equivalence relation on the constants fromC.
Let [c] denote the≡-equivalence class which containsc for each constantc ∈ C. Let D
be the set

{[c] : c is a constant inC}.
LetT be the set

{[c] : c ∈ C, c�� ∈ �}.
Let

[c′]�[c′′] iff c′�c′′ ∈ �.

Clearly,� is a linear ordering onT and〈T , �〉 is a time domain. Let the mappingI be
defined on the vocabularyL ∪ C by the clauses:
1. I (x), I (d) ∈ D for individual variablesx and constantsd, and

I (x) = {c ∈ C : c = x ∈ �}, I (d) = {c ∈ C : c = d ∈ �}.

292 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

2. I (f) : Dn → D for n-ary function symbolsf and

I (f)([c1], . . . , [cn]) = {c ∈ C : c = f (c1, . . . , cn) ∈ �}.
3. I (R) : Dn → D for n-ary relation symbolsRand

I (R)([c1], . . . , [cn]) = 1 iff R(c1, . . . , cn) ∈ �.

4. I (v) : I (T) → D for temporal variablesv and

I (v)
([[c′], [c′′]]) = {c ∈ C : ((� = c′
v = c) ∧ � = c′′
�) ∈ �}.

5. I (A) : I (T) → {0,1} for temporal propositional lettersA and
I (A)

([[c′], [c′′]]) = 1 iff ((� = c′
A) ∧ � = c′′
�) ∈ �.

6. I (P) : (T) → {0,1} for state variablesP and
I (P)([c′]) = 1 iff (� = c′
��P ��
�) ∈ �.

A lengthybut otherwisestraighforwardargument,which is standard for canonicalmodels,
shows that the above definitions are correct,〈D, I (0), I (+)〉 is a duration domain,I (�) is a
measure function fromI (T) toD, F = 〈〈T , �〉, 〈D, I (0), I (+)〉, I (�)〉 is an abstract DC
frame andI is a DC interpretation ofL ∪ C into F, which means thatM = 〈F, I 〉 is an
abstract DC model forL ∪ C. What makesM relevant is the following lemma.

Lemma 3 (Truth lemma). Let � ∈ I (T) and � = [[c′], [c′′]] for somec′, c′′ ∈ C. Let
� = {� : ((� = c′
�) ∧ � = c′′
�) ∈ �}. Then

I�(t) = {c ∈ C : t = c ∈ �} and M,��� iff � ∈ �

for every term t and every formula� written in the vocabularyL ∪ C.

Proof. The proof about terms is by induction on their construction. The proof about formu-
las is by induction on the lexicographical ordering of the pairs〈|�|∗, |�|〉, where|�| denotes
the length of� and|�|∗ = max{|�| : �∗ is a subformula of�}. Since we are focussing on
iteration in this paper, we do only the induction step about� of the form�∗.
Let�∗ ∈ �.� has witnesses inC by Lemma2. This implies that there is a state variable

P ∈ C such thatg(�, P) ∈ � and there is ank < � such that(��P ��∨��¬P ��)k ∈ �. Letk be
chosen to be the least one with this property. Then we have(��Q1��
. . .
��Qk��) ∈ �where
Q1, . . . ,Qk ∈ {P,¬P } andQi is P iff Qi−1 is¬P for i�2. Together withg(�, P) ∈ �,
this implies that�k ∈ �, which, by the induction hypothesis, implies thatM,���k and,
consequently,M,���∗.
Now letM,���∗. ThenM,���k for somek < �, which implies that(� = 0
�k) ∈ �

for thatk. This implies�∗ ∈ � by one application of DC∗1 andk applications of DC∗2.
�

3.3. The completeness theorem

Now we are ready to prove the�-completeness of our proof system for abstract-time
DC∗.

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 293

Theorem 2. Let �0 be a consistent set ofDC∗ formulas in theDC vocabularyL . Then
there is an abstractDCmodelM0 for L and an interval� in the time domain ofM0 such
thatM0,��� for all � ∈ �0.

Proof. According to Lemma1, �0 can be extended to a maximal consistent set� of
formulas in the extensionL ∪ C by a setC consisting of countably many fresh individual
constants and countably many fresh state variables. The set� can be constructed to have
witnesses inC. Now consider the modelM = 〈F, I 〉 which was constructed from such
a set� in Section 3.2. Letc′, c′′ ∈ C satisfy the conditionsc′ = 0, c′′ = � ∈ �. Then
c′�c′′ ∈ � and the set (7) is� itself. Then Lemma 3 implies thatM, [[c′], [c′′]]�� for all
� ∈ � and, in particular, for all� ∈ �0. To obtainM0 fromM, one only needs to replaceI
by its restriction to the vocabularyL . �

4. The interderivability betweenDC∗3, DC∗4 and DC∗5

As seen in the previous section, the proof rule DC∗5 is implicitly related to the state
variable binding existential quantifier in DC∗. The key ingredient in this rule is the formula
g(�, P). In this section, we first show that in HDC, which includes this quantifier, one can
prove the correctness of an explicit definition for iteration involving this formula by means
of the HDC-specific axioms and rules from Section 1.5.3 and the group of axioms about
iteration which consists of DC∗1, DC∗2 and DC∗4. This means that DC∗5 can be regarded
as a derived rule in the extension of the proof system for HDC by the axioms DC∗1, DC∗2
and DC∗4 about iteration. We also prove that DC∗4 is derivable from DC∗3 in the proof
system for DC without quantification over state. Furthermore, we prove that DC∗3 and
DC∗4 are derivable in the the proof system for DC which has the axioms DC∗1, DC∗2 and
the rule DC∗5 about iteration. Taken apart from the other axioms about iteration, DC∗4 is
weaker than DC∗3.We give no proof of DC∗3 in a systemwith DC∗4 being as the induction
axiom.
In the deductions below we give in detail only the steps which involve iteration- and

state-variable-quantifier-specific axioms and rules. We skip the detail on other steps and
mark them by “DC” to indicate that they can be made in DC with neither iteration, nor state
variable quantifier.

Proposition 1. LetP /∈ FV (�). Then

∃Pg(�, P) ⇔ �∗

is provable in the extension of the proof system forHDC by the axiomsDC∗1, DC∗2 and
DC∗4,and also in the extension of this proof system byDC∗1, DC∗2 andDC∗3.

Proof. Here follow deductions of�∗ ⇒ ∃Pg(�, P) and∃Pg(�, P) ⇒ �∗ involving
DC∗4.

294 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

�∗ ⇒ ∃Pg(�, P):
1 (g(�, P)
�) ⇒
⇒ g(�, P) ∨ � ∨ ∃x(x = 0∧ x < � ∧ (g(�, P) ∧ � = x
�)) DC

2 � ⇒ � = 0∨ (��1�� ∧ �) DC
3 � = 0⇒ g(�, P) DC
4 ��1�� ∧ � ⇒ ∃P(��P �� ∧ �) ∃s
5 ��P �� ∧ � ⇒ g(�, P) DC
6 ∃P(��P �� ∧ �) ⇒ ∃Pg(�, P) 5, ∃sr , ∃sl
7 � ⇒ g(�, P) ∨ ∃Pg(�, P) 2-4, 6, DC
8 x = 0∧ x < � ⇒ ∃Q(� = x ∧ ��Q ⇔ P ��
��Q ⇔ 0��)
s

9 x = 0∧ x < � ⇒ ∃Q(� = x ∧ ��Q ⇔ P ��
��Q ⇔ 1��)
s

10 x = � ∧ (g(�, P) ∧ � = x
�) ⇒(
(g(�, P) ∧ (�
��P ��) ∧ � = x
�)∨
(g(�, P) ∧ (�
��¬P ��) ∧ � = x
�)

)
DC

11

(
(� = x ∧ ��Q ⇔ P ��
��Q ⇔ 0��)∧
(g(�, P) ∧ (�
��P ��) ∧ � = x
�)

)
⇒

⇒ (g(�,Q) ∧ (�
��Q��)
� ∧ ��¬Q��) DC
12 (g(�,Q) ∧ (�
��Q��)
� ∧ ��¬Q��) ⇒ g(�,Q) DC

13

(
(� = x ∧ ��Q ⇔ P ��
��Q ⇔ 0��)∧
(g(�, P) ∧ (�
��P ��) ∧ � = x
�)

)
⇒ ∃Qg(�,Q) 11, 12, DC,∃sr

14 ∃Q(� = x ∧ ��Q ⇔ P ��
��Q ⇔ 0��) ⇒
⇒ ((g(�, P) ∧ (�
��P ��) ∧ � = x
�) ⇒ ∃Qg(�,Q)) 13, DC

15 x = 0∧ x < � ∧ (g(�, P) ∧ (�
��P ��) ∧ � = x
�) ⇒
⇒ ∃Qg(�,Q) 8, 14, DC

16 x = 0∧ x < � ∧ (g(�, P) ∧ (�
��¬P ��) ∧ � = x
�) ⇒ like 15, but
⇒ ∃Qg(�,Q) using 9 instead of 8

17 x = 0∧ x < � ∧ (g(�, P) ∧ � = x
�) ⇒ ∃Qg(�,Q) 10, 15, 16, DC
18 ∃x(x = 0∧ x < � ∧ (g(�, P) ∧ � = x
�)) ⇒ ∃Qg(�,Q) 17, DC
19 (g(�, P)
�) ⇒ g(�, P) ∨ ∃Pg(�, P) ∨ ∃Qg(�,Q) 1, 7, 18, DC
20 ∃Qg(�,Q) ⇒ ∃Pg(�, P) ∃sl ,∃sr , DC
21 g(�, P) ⇒ ∃Pg(�, P) ∃sr
22 (g(�, P)
�) ⇒ ∃Pg(�, P) 19, 20, 21, DC
23 ∃P(g(�, P)
�) ⇒ ∃Pg(�, P) 22,∃sl
24 (∃Pg(�, P)
�) ⇒ ∃P(g(�, P)
�) Bs

25 (∃Pg(�, P)
�) ⇒ ∃Pg(�, P) 23, 24, DC
26 � = 0⇒ ∃Pg(�, P) 3, ∃sr , DC
27 � = 0∨ (∃Pg(�, P)
�) ⇒ ∃Pg(�, P) 25, 26, DC
28 �(� = 0∨ (∃Pg(�, P)
�) ⇒ ∃Pg(�, P)) 27, DC
29 �∗ ⇒ ∃Pg(�, P) 28, DC∗4, DC

∃Pg(�, P) ⇒ �∗:

1 g(�, P) ∧ (��P �� ∨ ��¬P ��)k ⇒ ∨
l�k

�l k < �, DC

2 �l ⇔ (� = 0
�l) l < �, DC
3 (� = 0
�l) ⇒ �∗ l < �, DC∗1, DC∗2, DC

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 295

4 (��P �� ∨ ��¬P ��)k ⇒ (g(�, P) ⇒ �∗) k < �, 1–3, DC
5 g(�, P) ⇒ �∗ 4,�
6 ∃Pg(�, P) ⇒ �∗ 5, ∃sl
A deduction of�∗ ⇒ ∃Pg(�, P) can be obtained using the instance of DC∗3 with �

being¬∃g(�, P). We skip it here. �

Proposition 2. DC∗4 is provable in the extension of the proof system forDCby justDC∗3.

Proof. Here follows a deduction of DC∗4 involving DC∗3:
1 �∗ ∧ ¬� ⇒ (�∗ ∧ ¬�
�) DC
2 (�∗ ∧ ¬�
�) ⇒ (� = 0∧ ¬�
�) ∨ ((�∗ ∧ �
�) ∧ ¬�
�) DC∗3
3 �(� = 0∨ (�
�) ⇒ �) ⇒ ¬(� = 0∧ ¬�
�) DC
4 ((�∗ ∧ �
�) ∧ ¬�
�) ⇒ ((�
�) ∧ ¬�
�) DC
5 �(� = 0∨ (�
�) ⇒ �) ⇒ ¬((�
�) ∧ ¬�
�) DC
6 �(� = 0∨ (�
�) ⇒ �) ⇒ (�∗ ⇒ �) 1–5, DC �

Proposition 3. DC∗3 andDC∗4 is provable in the extension of the proof system forDC by
the axiomsDC∗1, DC∗2 andDC∗5.

Proof. Here follows a deduction of DC∗3 involving DC∗5:
1 (��P �� ∨ ��¬P ��)k ∧ g(�, P) ⇒ ∨

l�k

�l k < �, DC

2¬(�=0∧�
�)∧�l⇒(�∗∧¬�
�l) l<�, DC∗1, DC
3¬(¬((�∗∧¬�
�)⇒¬�)
�)∧(�∗∧¬�
�m+1)⇒(�∗∧¬�
�m) m<�, DC∗2, DC
4¬(�=0∧�
�)∧�l∧¬(¬((�∗ ∧ ¬�
�)⇒¬�)
�)∧⇒¬� l<�, 2, 3, DC

5

(
(��P �� ∨ ��¬P ��)k ∧ g(�, P) ∧ ¬(� = 0∧ �
�)∧
¬(¬((�∗ ∧ ¬�
�) ⇒ ¬�)
�)

)
⇒ ¬� k < �, 1, 4, DC

6g(�, P) ∧ ¬(� = 0∧ �
�) ∧ ¬(¬((�∗ ∧ ¬�
�) ⇒ ¬�)
�) ⇒ ¬� 5,�
7¬(� = 0∧ �
�) ∧ ¬(¬((�∗ ∧ ¬�
�) ⇒ ¬�)
�) ⇒ (�∗ ⇒ ¬�) 6, DC∗5
8�∗ ∧ � ⇒ (� = 0∧ �
�) ∨ ((�∗ ∧ ¬�
�) ∧ �
�) 7, DC

9 (�∗ ∧ �
�) ⇒ (� = 0∧ �
�
�) ∨ ((�∗ ∧ ¬�
�) ∧ �
�
�) 8, DC

10(�∗ ∧ �
�) ⇒ (� = 0∧ �
�) ∨ ((�∗ ∧ ¬�
�) ∧ �
�) 9, DC

Here follows a deduction of DC∗4 involving DC∗5:
1 (��P �� ∨ ��¬P ��)k ∧ g(�, P) ⇒ ∨

l�k

�l k < �, DC

2 �(� = 0∨ (�
�) ⇒ �) ∧ �l ⇒ (�
�l) l < �, DC
3 �(� = 0∨ (�
�) ⇒ �) ∧ (�
�m+1) ⇒ (�
�m) m < �, DC
4 �(� = 0∨ (�
�) ⇒ �) ∧ (�
�l) ⇒ � l < �, 3, DC
5 (��P �� ∨ ��¬P ��)k⇒(g(�, P)⇒(�(�=0∨ (�
�) ⇒ �) ⇒ �)) k < �, 1, 2, 4, DC
6 g(�, P) ⇒ (�(� = 0∨ (�
�) ⇒ �) ⇒ �) 5,�
7 �∗ ⇒ (�(� = 0∨ (�
�) ⇒ �) ⇒ �) 6, DC∗5
8 �(� = 0∨ (�
�) ⇒ �) ⇒ (�∗ ⇒ �) 7, DC �

296 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

5. DC∗3 as a translation of aPDL induction axiom

The origins of the axiom DC∗4 and the rule DC∗5 were given in the Introduction. In
this section, we point to a certain degree of semantical compatibility between the mod-
els for ITL and the models for propositional dynamic logic (PDL). We give a truth-
preserving translation of PDL formulas into ITL formulas that is based on this semantic
correspondence. We show that the axiom DC∗3 can be obtained by means of this transla-
tion from an induction axiom known from PDL. Basic definitions about PDL can be found
in, e.g.,[1].
Let us assume that set of the time pointsTof some abstract ITL frameF = 〈〈T , �〉, 〈D,

+,0〉,m〉 is also the set of the possible worlds of some PDL frame. Consider a PDL vo-
cabulary consisting of the set of propositional lettersP and the set of relation lettersR. Let
v be a PDL valuation of the vocabularyP ∪ R into the PDL frame based onT, that is, let
v(p) ⊆ T for p ∈ P andv(r) ⊆ T × T for r ∈ R. Let us consider only PDL valuationsv
which satisfy the conditionv(r) ⊆ � for r ∈ R. SinceIdT ⊆ � , andR, S ⊆ � implies
R ∪ S,R ◦ S andR∗ ⊆ � , we can assume that the standard extensionsṽ of suchv over
relation terms give only subrelations of� too.
Assume that〈T , �〉 is bounded, that is, letT = [minT ,maxT] and consider an ITL

vocabularyL whose set of temporal propositional letters isP ∪ R. We are not interested
in specifying the rest ofL . Given the PDL valuationv, we can define an interpretationI of
these temporal propositional letters intoF by putting

I (p)([�1, �2]) = 1 iff �1 ∈ v(p) and�2 = maxT for p ∈ P ;
I (r)([�1, �2]) = 1 iff 〈�1, �2〉 ∈ v(r) for r ∈ R.

Let the translationt of the PDL language based on the vocabularyP ∪ R into the ITL∗
language based onL be defined by the clauses:

t(⊥) ⇀↽ ⊥
t(q) ⇀↽ q for q ∈ P ∪ R;

t(� ∨ �) ⇀↽ t(�) ∨ t(�)
t(¬�) ⇀↽ ¬t(�)
t(Id) ⇀↽ � = 0
t(
 ∪ �) ⇀↽ t(
) ∨ t(�)
t(
 ◦ �) ⇀↽ t(
)
t(�)
t(
∗) ⇀↽ (t(
))∗

t(〈
〉�) ⇀↽ (t(
)
t(�))

The following proposition explains the correspondence between the PDL model based
onT andv, and the ITL model〈F, I 〉 usingt :

Proposition 4. Let� be aPDL formula in the vocabularyP ∪ R. Then

T , v,minT �� iff 〈F, I 〉, [minT ,maxT]� t(�).

Proof. Direct check by induction on the construction�. �

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 297

PDL has the following induction axiom about iteration in its proof system[1]:

[
∗](� ⇒ [
]�) ⇒ (� ⇒ [
∗]�).

Thet-translation of this axiom is equivalent to

(
∗
(
∗
�) ∧ ¬�) ∨ ((
∗
�) ⇒ �), (8)

where� stands for¬�.
The validity of the PDL induction axiom enforces(ṽ(
))∗ ⊇ ṽ(
∗) on the frame level

and therefore characterises iteration the way local correspondents do inmodal logic (cf. e.g.
[33]). Characterisation on the frame level assumes the freedom to choose interpretations into
a fixed frame and generally does not imply deductive characterisation. The corresponding
inclusion about iteration in DC∗ is enforced on the frame level by DC∗3, which can be
obtained from (8) by replacing its subformulas with� of the form(�1

� ∧ �2) by (�1 ∧
�
�2), and some simple ITL transformations. To understand this replacement, note that the
satisfaction of formulas of the kind(�1

�∧�2) at an interval� in amodelM depends on the
set of those� ∈ � for whichM, [�,max�]��. However, such a set of time points� can be
defined by a condition of the formM, [min�, �]��′ for some appropriate�′ as well. The
move from(�1

�∧�2) to (�1∧�
�2) facilitated the proof of the completeness of a system
for DC∗ with DC∗3 in it for subsets of DC∗ in [10,13] and the precursor of this paper [5]. To
achieve deductive characterisation, the benefit fromchoosinginterpretations as allowed on
the frame level can be supplied byfindingformulas with appropriate meanings. In the case
of DC∗3 the scope of the result from [5] is limited by our ability to find formulas� which
approximate�∗ for � in the considered subset and argue that the respective instances of
DC∗3 force�∗ to have the right truth value.
The axioms DC∗1 and DC∗2 can be obtained by the same translation from the PDL

axioms[
∗]� ⇒ � and[
∗]� ⇒ [
∗][
]�, respectively.

6. Some more examples of the use ofDC∗1–DC∗5

The interderivability proofs fromSection 4 illustrate theworking of our axioms and proof
rule. In this section, we give derivations for a couple of DC∗ theorems of general interest
and use one of them in a proof about our introductory gas-burner example in order to give
some such illustration with a practical flavour.
Here are two derivations of the monotonicity of iteration. One of them involves DC∗3:

∗ ∧ ¬�∗ ⇒ (¬�∗ ∧ � = 0
�) ∨ (((
∗ ∧ �∗

) ∧ ¬�∗)
�) by DC∗3
⇒ (((
∗ ∧ �∗

) ∧ ¬�∗)
�) by DC∗1
⇒ (¬�∗ ∧ �∗)
� by DC∗2

and
 ⇒ �
⇒ ⊥

298 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

The other involves the proof rules� and DC∗5:

1 (��P �� ∨ ��¬P ��)k ⇒
(

g(
, P) ⇒
(

�(
 ⇒ �) ⇒ ∨
l�k

�l
))

k < �, DC

2 �m ⇒ �∗ m<�, DC∗1, DC∗2, DC
3 (��P �� ∨ ��¬P ��)k ⇒ (g(
, P) ⇒ (�(
 ⇒ �) ⇒ �∗)) k < �, 1, 2, DC
4 g(
, P) ⇒ (�(
 ⇒ �) ⇒ �∗) 3,�
5
∗ ⇒ (�(
 ⇒ �) ⇒ �∗) 4, DC∗5
6 �(
 ⇒ �) ⇒ (
∗ ⇒ �∗)

Here follows another useful DC∗ theorem:

� DC∗ �(� ⇒ ¬(�
¬
) ∧ ¬(¬�
�))∧
�(� = 0⇒
 ∧ �) ∧ �(� ⇒ ¬(�
¬)) ⇒
⇒ �∗ ⇒ �(∨ (

�∗
�)).

(9)

To prove it in our system, below we give a derivation of�∗ ⇒ �(∨ (

�∗
�)) using

� ⇒ ¬(�
¬
),� ⇒ ¬(¬�
�),� ⇒ ¬(�
¬) and� = 0⇒
, � = 0⇒ �

as assumptions. Then (9) will follow by the deduction theorem for DC [18].

1 � ⇒ ¬(�
¬
) assumption
2 � ⇒ ¬(�
¬(

� = 0)) by 1
3 � = 0⇒ �∗ by DC∗1
4 � ⇒ ¬(�
¬(

�∗)) by 2, 3,Mono

5 � = 0⇒
 assumption
6 � = 0⇒ (� = 0
� = 0) L2
7 � = 0⇒ (

�∗) by 5, 6, DC∗1,Mono

8 (�
¬(

�∗)) ⇒ ¬� = 0 by 7, DC
9 ¬((�
¬(

�∗)) ∧ � = 0
�) by 8,N
10 (�∗ ∧ (�
¬(

�∗))) ⇒

((�
¬(

�∗)) ∧ � = 0
�)∨
((�∗ ∧ ¬(�
¬(

�∗))
�)∧

(�
¬(

�∗))
�) by DC∗3
11 (�∗ ∧ ¬(�
¬(

�∗))
�)∧

(�
¬(

�∗)) ⇒
(�
((

�∗
�) ∧ ¬(

�∗))∨

(� ∧ (�
¬(

�∗)))) DC
12 (

�∗
�) ⇒ (

�∗) by DC∗2,Mono

13 ¬((

�∗
�) ∧ ¬(

�∗))
∨(� ∧ (�
¬(

�∗))) by 4,Mono, 12

14 ¬(�
((

�∗
�) ∧ ¬(

�∗))
∨(� ∧ (�
¬(

�∗)))) by 13,N

15 ¬((�∗ ∧ ¬(�
¬(

�∗))
�)∧
(�
¬(

�∗))) by 11, 14

16 �∗ ⇒ ¬(�
¬(

�∗)) by 9, 10, 15,Mono

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 299

17 �∗ ∧ (¬(�∗
�)
�) ⇒
((¬(�∗
�)
�) ∧ � = 0
�)∨
(((�∗ ∧ ¬(¬(�∗
�)
�))
�) ∧ (¬(�∗
�)
�)
�) DC∗3

18 � = 0⇒ � assumption
19 � = 0⇒ �∗ DC∗1
20 � = 0⇒ ¬(¬(�∗
�)
�) 18, 19, DC
21 ¬((¬(�∗
�)
�) ∧ � = 0
�) 20, DC
22 ¬(((�∗ ∧ ¬(¬(�∗
�)
�))
�) ∧ (¬(�∗
�)
�)
�) DC
23 �∗ ⇒ ¬(¬(�∗
�)
�) 17, 21, 22, DC
24 � ⇒ ¬(�
¬) assumption
25 �∗ ⇒ �(∨ (

�∗
�)) 16, 23, 24, DC.

Now let us prove the correctness of the gas-burner design from the introduction as a last
example of the working of our DC∗ axioms and rule. We have to give a derivation for

((��leak�� ∧ ��1)
(��nonleak�� ∧ ��30))∗ ⇒ �(��60⇒ 20
∫
leak��).

Let

�⇀↽ ��leak�� ∧ ��1
��¬leak�� ∧ ��30,

⇀↽� = 0∨ ��¬leak�� ∨ (��leak�� ∧ ��1
��¬leak�� ∧ ��30),

�, ⇀↽� = 0∨ (��1∧ ��leak��
� = 0∨ ��¬leak��).
The formulas

�(� ⇒ ¬(�
¬
) ∧ ¬(¬�
�)), �(� = 0⇒
 ∧ �) and� ⇒ ¬(�
¬)

are valid in DC without iteration. Therefore we can complete our derivation using (9),
provided we can derive

 ⇒ 20
∫
leak�� and(

�∗
�) ∧ ��60⇒ 20

∫
leak��.

The first formula is straightforward to derive without DC∗-specific axioms. Here follows a
derivation for the second formula:

1
 ⇒ 31
∫
leak�� DC

2 �∗ ∧ 31∫ leak > � ⇒ (�∗ ∧ 31∫ leak > �
�) DC
3 � ⇒ 31

∫
leak�� DC

4 (�∗ ∧ 31∫ leak > �
�) ⇒
(� = 0∧ 31∫ leak > �
�)∨
(((�∗ ∧ 31∫ leak��
�) ∧ 31∫ leak > �)
�) by DC∗3

5 � = 0⇒ 31
∫
leak�� DC

6 (�∗ ∧ 31∫ leak > �
�) ⇒
(((�∗ ∧ 31∫ leak��
�) ∧ 31∫ leak > �)
�) by 4, 5,Mono

7 (�∗ ∧ 31∫ leak��
�) ⇒ 31
∫
leak�� by 2, 3, DC

8 �∗ ⇒ 31
∫
leak�� by 6, 7,Mono

9 (

�∗) ⇒ 31
∫
leak�� by 1, 8, DC

10 � ⇒ ∫
leak�1 DC

11 (

�∗
�) ∧ ��60⇒ 20
∫
leak�� by 9, 10, DC.

300 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

7. Related work on the axiomatisation of iteration

Iteration is known aschop-starin Moszkowski’s original discrete-time ITL, where it is
regarded as part of the basic system. Unlike real- and abstract-time DC, finite variability
is a trivial property in bounded discrete time intervals and therefore discrete-time ITL is
recursively axiomatisable, whereas in DC one has to settle for relative completeness or
bring in�-rules like in this paper. Apart from that, the axioms DC∗1–DC∗4 are valid in
discrete-time ITL too and can be derived in its proof system. The rule DC∗5, however, is
new and DC-specific. An analogous rule can, in principle, be put together for discrete-time
ITL too by writing a formula with a meaning like that off(�, P), but we do not know this
to have been worked on.
Another difference with discrete-time ITL is the adoption of thelocality principlethere.

This means that the truth values of propositional temporal letters depend only on the begin-
ning point of the reference interval. The locality principlemakes propositional discrete-time
ITL equivalent to (untimed) regular expressions in both expressive power and complexity.
We should note the recent advances in both the axiomatisation and the decision procedures
for discrete-time ITL from[27] where both issues are elegantly handled using a proposed
hierarchical complete proof system. The role of propositional temporal letters with the
locality principle can largely be taken by DC state variables, which means that the decid-
ability results about the duration-free subset of simple DC known as the��P ��-subset of DC
from [40] look akin to some earlier results on propositional discrete-time ITL. By contrast,
adding propositional temporal letters without the locality principle to the��P ��-subset of
DC renders it non-recursively axiomatisable [14].

8. Discussion on the decidability results for simpleDC∗

As said in the introduction of the paper, representing the repetitive behaviour of real-time
systems is the main motivation for introducing the iteration operator intoDC. An important
subset of DC∗ for this purpose has been introduced in [7] as the class of so-calledsimple
DC∗ formulas, whose syntax can be defined by the BNF

� ::= ��S�� | a�� | ��a | (� ∨ �) | (� ∧ �) | (�
�) | �∗. (10)

In this section, we discuss the decidability of the satisfiability of simple DC∗ formulas at
the real-time frame, i.e. the frame in which the time domain is〈R, �〉 and the duration
domain is〈R+,+,0〉.
One of the notions in the literature that are close to our notion of simple DC∗ is the notion

of timed regular expressionsintroduced by Asarin et al.[3], a subset of which has been
introduced by us earlier in [23]. Simple DC∗ formulas syntactically correspond exactly to
timed regular expression, and their semantics coincide. Therefore, a simple DC∗ formula
can be viewed as a timed regular expression. It was shown in [3] how from a timed regular
expressionE one can build a timed automatonAwhich recognises exactly the models ofE
and has only constants fromE in the constraints for its clock variables (guards, tests and
invariants). It is well known that emptiness is decidable for timed automata with integer
constants in their guards and tests [2]. This entails the following theorem:

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 301

Theorem 3. The satisfiability of formulas with the syntax(10) in which a stands for integer
constants is decidable.

The complexity of the decidability procedure, however, is exponential in the size of the
constants occurring in the clock constraints (see e.g. [2]).
In [3] it is also shown how given a timed automatonA, one can build a timed regular

expressionEand a renaming of the locations ofAsuch that eachmodel ofE is the renaming
of a behaviour ofA. In this sense simple DC∗ formulas and timed automata have the same
expressive power.
If we restrict ourselves to the class ofsequentialsimple DC∗ formulas, which can be

defined by the BNF

� ::= � = 0 | ��S�� | � ∨ � | (�
�) | �∗ | � ∧ a�� | � ∧ ��a,

then we can have a very simple decision procedure for satisfiability and some interesting
results. Since the operators
 and∧ distribute over∨, and because of the equivalence
(�∨�)∗ ⇔ (�∗
�∗)∗, each sequential simpleDC∗ formula� is equivalent to a disjunction
of ∨-free simple formulas. Such a� is satisfiable iff at least one of its disjunctive members
is satisfiable. The satisfiability of∨-free sequential simple DC∗ formulas is very easy to
decide indeed. Let min(�),max(�) ∈ R be defined for such� by the clauses

min(� = 0) = max(� = 0) = 0,
min(��S��) = 0, max(��S��) = ∞,
min(�1

�2) = min(�1)+min(�2), max(�1
�2) = max(�1)+max(�2),
min(�∗) = 0, If max(�) > 0 then max(�∗) = ∞ otherwise max(�∗) = 0,
min(� ∧ a��) = max{min(�), a}, max(� ∧ a��) = max(�),
min(� ∧ ��a) = min(�), max(� ∧ ��a) = min{max(�), a}.

Obviously� is satisfiable iff min(�)� max(�).
In [23,24], we have developed some simple algorithms for checking a real-time system

whose behaviour is described by a ‘sequential’ timed regular expression for a linear duration
invariant of the form

�
(
a���b ⇒ ∑

S∈S
cS
∫
S�M

)
,

whereS is a finite set of state variables. Because of the obvious correspondence between
sequential simple DC∗ formulas and sequential timed regular expressions, these algorithms
can be used for proving automatically the implication froma sequential simpleDC∗ formula
to a linear duration invariant. An advantage of the method is that it reduces the problem to
well-understood linear programming problems. Because of this advantage, in[6], we tried
to generalise the method for the general simple DC∗ formulas, and showed that in most
cases, the method can still be used for checking the implication from a simple DC∗ formula
to a linear duration invariant.

302 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

9. Concluding remarks

The contribution of this paper is to show that iteration can be defined and/or axiomatised
(relatively) completely inquantified systemsof DC with some support from the notion of
finite variability of state which is more deeply seated in DC. This approach helps to identify
and restrict finite variabilityof stateas DC’s only source of recursive unaxiomatisability,
which can be regarded asimcompletenessin the sense of Gödel. Having the infinitary
rule about the finite variability of state, the class of duration domains targetted by our
completeness theorem can be narrowed down to each of the practically important domains
〈R+,0,+〉 and〈N,0,+〉 by enforcing other principles which defy recursive axiomatisation
with no further infinitary additions. For instance,

x = 0∨ (��x)∗

means that there are no intervals with “infinitely small” (non-standard) durations, which is
one possible form of the “the missing part” in the relatively complete axiomatisation with
respect to real time from[16]. By extending arithmetic with multiplication and division and
the real-closed field axioms about them (cf. e.g. [31]) this axiom can be shown to entail
theprinciple of Archimedeswhich rules out “infinitely large” real numbers. As for discrete
time,

(� = 1∧ ¬(� = 0
� = 0))∗

means that every interval is a finite union of unit intervals which themselves have no internal
points.
Finite variability of state does not seem to be helpful enough for the axiomatisation of

the general least-fixed-point operator� in DC as known from[28]. For the time being, the
method from [11], which is similar to that from the precursor [5] of this paper, allows us to
do only subsets of HDC with�.

References

[1] S. Abramsky, D. Gabbay, T.S.E.Maibaum (Eds.), Handbook of Logic in Computer Science, Clarendon Press,
Oxford, 1992.

[2] R. Alur, D.L. Dill, A theory of timed automata, Theoret. Comput. Sci. 126 (1994) 183–235.
[3] E. Asarin, P.Caspi, O.Maler, AKleene theorem for timedautomata, in:G.Winskel (Ed.), Proc. IEEE Internat.
Symp. Logics in Computer Science LICS’97, IEEE Computer Society Press, Silver Spring, MD, 1997, pp.
160–171.

[4] Dang Van Hung, Modelling and verification of biphase mark protocols in duration calculus using PVS/DC−,
in: Proc. 1998 Internat. Conf. Application of Concurrency to System Design (CSD’98), IEEE Computer
Society Press, Silver Spring, MD, March 1998, pp. 88–98.

[5] DangVanHung, D.P.Guelev, Completeness and decidability of a fragment of duration calculuswith iteration,
in: P.S. Thiagarajan,R.Yap (Eds.), Advances inComputingScience—ASIAN’99,Vol. 1742,Springer, Berlin,
1999, pp. 139–150.

[6] Dang Van Hung, Pham Hong Thai, On checking parallel real-time systems for linear duration invariants,
in: B. Kramer, N. Uchihita, P. Croll, S. Russo (Eds.), Proc. Internat. Symp. of Software Engineering for
Parallel and Distributed Systems (PDSE’98), IEEE Computer Society Press, Silver Spring, MD, April 1998,
pp. 61–71.

D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304 303

[7] Dang Van Hung, Wang Ji, On the design of hybrid control systems using automata models, in: Proc. FST
TCS 1996, Lecture Notes in Computer Science, Vol. 1180, Springer, Berlin, 1996, pp. 156–167.

[8] B. Dutertre, On first-order interval temporal logic, Report CSD-TR-94-3, Department of Computer Science,
RoyalHolloway,University of London, Egham,Surrey TW200EX,England, 1995. (A short version appeared
as [9]).

[9] B. Dutertre, On first order interval temporal logic, in: Proc. LICS’95, IEEE Computer Society Press, Silver
Spring, MD, 1995, pp. 36–43.

[10] D.P. Guelev, A calculus of durations on abstract domains: completeness and extensions, Technical Report
139, UNU/IIST, P.O. Box 3058, Macau, May 1998.

[11] D.P. Guelev, A complete fragment of higher-order duration�-calculus, in: Proc. FST TCS 2000, Vol. 1974,
Springer, Berlin, 2000, pp. 264–276.

[12] D.P. Guelev, Interpolation and related results on the�P �-fragment ofDC with iteration, Technical Report
203, UNU/IIST, P.O. Box 3058, Macau, June 2000.

[13] D.P. Guelev, Probabilistic and temporal modal logics, Ph.D. Thesis, Sofia University, 2000 (in Bulgarian).
[14] D.P.Guelev, A complete proof system for first-order interval temporal logic with projection, J. Logic Comput.

14 (2) (2004) 215–249.
[15] D.P. Guelev, Sharpening the incompleteness of the duration calculus, in: Irek Ulidowski (Ed.), Proc. ARTS

2004, volume? of ENTCS, Elsevier Science, Amsterdam, 2004 (Presented at ARTS 2004, Stirling, UK).
[16] M.R. Hansen, Zhou Chaochen, Semantics and completeness of duration calculus, in: Real-Time: Theory and

Practice, Lecture Notes in Computer Science, Vol. 600, Springer, Berlin, 1992, pp. 209–225.
[17] M.R. Hansen, Zhou Chaochen, Chopping a point, in: BCS-FACS Seventh Refinement Workshop, Electronic

Workshops in Computing, Springer, Berlin, 1996.
[18] M.R. Hansen, Zhou Chaochen, Duration calculus: logical foundations, Formal Aspects of Comput. 9 (1997)

283–330.
[19] He Jifeng, A behavioral model for co-design, in: Proc. FM’99, Lecture Notes in Computer Science, Vol.

1709, Springer, Berlin, 1999, pp. 1420–1438.
[20] He Jifeng, Integrating variants of DC, Research Report 172, UNU/IIST, P.O. Box 3058, Macau, August 1999.
[21] He Weidong, Zhou Chaochen, A case study of optimization, Comput. J. 38 (9) (1995) 734–746.
[22] D. Kozen, Results on the propositional�-calculus, Theoret. Comput. Sci. 27 (1983) 333–354.
[23] Li Xuan Dong, Dang Van Hung, Checking linear duration invariants by linear programming, in: J. Jaffar,

R.H.C. Yap (Eds.), Concurrency and Palalellism, Programming, Networking, and Security, Lecture Notes in
Computer Science, Vol. 1179, Springer, Berlin, 1996, pp. 321–332.

[24] Li Xuan Dong, Dang Van Hung, Zheng Tao, Checking hybrid automata for linear duration invariants, in:
R.K. Shamasundar, K. Ueda (Eds.), Advances in Computing Science, Lecture Notes in Computer Science,
Vol. 1345, Springer, Berlin, 1997, pp. 166–180.

[25] B. Moszkowski, Temporal logic for multilevel reasoning about hardware, IEEE Comput. 18 (2) (1985)
10–19.

[26] B. Moszkowski, Executing Temporal Logic Programs, Cambridge University Press, Cambridge, 1986.
[27] B. Moszkowski, A hierarchical completeness proof for propositional temporal logic, in: N. Dershowitz (Ed.),

Verification: Theory and Practice: Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday,
Lecture Notes in Computer Science, Vol. 2772, Springer, Berlin, 2003, pp. 480–523.

[28] P.K. Pandya, Some extensions to mean-value calculus: expressiveness and decidability, in: Proc. CSL’95,
Lecture Notes in Computer Science, Vol. 1092, Springer, Berlin, 1995, pp. 434–451.

[29] P.K. Pandya, Dang Van Hung, Duration calculus of weakly monotonic time, in: Proc. FTRTFT’98, Lecture
Notes in Computer Science, Vol. 1486, Springer, Berlin, 1998, pp. 55–64.

[30] E. Pavlova, Dang Van Hung, A formal specification of the concurrency control in real-time databases,
Technical Report 152, UNU/IIST, P.O. Box 3058, Macau, January 1999.

[31] J. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, MA, 1967.
[32] D. Skordev, On the duration domains for interval temporal logic, Annuaire de l’Universite de Sofia “St.

Kliment Ochriski” 94 (2000) 27–33.
[33] J.A.F.K. van Benthem, Modal Logic and Classical Logic, Bibliopolis, 1983.
[34] B.H. Widjaja, He Weidong, Chen Zongji, Zhou Chaochen, A cooperative design for hybrid systems, in: A.

Pnueli, H. Lin (Eds.), Logic and Software Engineering, InternationalWorkshop in Honor of Chih-Sung Tang,
World Scientific, Singapore, 1996, pp. 127–150.

304 D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278–304

[35] Xu Qiwen, He Weidong, Hierarchical design of a chemical concentration control system, in: Proc. Hybrid
Systems III: Verification and Control, Lecture Notes in Computer Science, Vol. 1066, Springer, Berlin, 1995,
pp. 270–281.

[36] Yu Xinyao, Wang Ji, Zhou Chaochen, P.K. Pandya, Specification of an adaptive control system, in: Formal
Techniques inReal-Time and Fault-Tolerant systems, LectureNotes in Computer Science, Vol. 863, Springer,
Berlin, 1994, pp. 738–755.

[37] Zheng Yuhua, Zhou Chaochen, A formal proof of a deadline driven scheduler, in: Proc. FTRTFT’94, Lecture
Notes in Computer Science, Vol. 863, Springer, Berlin, 1994, pp. 756–775.

[38] Zhou Chaochen, D.P. Guelev, Zhan Naijun, A Higher-order Duration Calculus, Palgrave, 2000, pp. 407–416.
[39] Zhou Chaochen, M.R. Hansen, Duration Calculus, A Formal Approach to Real-Time Systems, Springer,

Berlin, 2004.
[40] Zhou Chaochen, M.R. Hansen, P. Sestoft, Decidability and undecidability results for duration calculus, in:

STACS’93, Lecture Notes in Computer Science, Vol. 665, Springer, Berlin, 1993, pp. 58–68.
[41] Zhou Chaochen, C.A.R. Hoare, A.P. Ravn, A calculus of durations, Inform. Process. Lett. 40 (5) (1991)

269–276.
[42] Zhou Chaochen, Li Xiaoshan, A Mean Value Calculus of Durations, Prentice-Hall, Englewood Cliffs, NJ,

1994, pp. 431–451.
[43] Zhou Chaochen, Zhang Jingzhong, Yang Lu, Li Xiaoshan, Linear duration invariants, in: Proc. FTRTFT’94,

Lecture Notes in Computer Science, Vol. 863, Springer, Berlin, 1994, pp. 86–109.

