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Abstract

The extension of the duration calculus (DC) itgration, which is also known a&leene star
enables the straightforward specification of repetitive behaviour in DC and facilitates the translation
of design descriptions between DC, timed regular expressions and timed automata. In this paper we
present axioms and a proof rule about iteration in DC. We consider abstract-time DC and its extension
by a state-variable binding existential quantifier known as higher-order DC (HDC). We show that the
w-complete proof systems for DC and HDC known from our earlier work can be extended by our
axioms and rule in various ways in order to axiomatise iteration completely. The additions we propose
include either the proof rule or an induction axiom. We also present results on the decidability of a
subset of the extension D®@f DC by iteration.
© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

The duration calculus(DC) was introduced by Zhou et g#1] as a logic to specify
requirements on real-time systems. DC is a first-order classical interval-based real-time
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logic with one normal binary modality known afiop It was developed by augmenting

the real-time variant of interval temporal logic (IT[25,26]), with boolean expressions

for stateand real-valued terms to denote stditeations DC has been used successfully in
many case studies such as [4,7,21,30,34-36,37]. We refer the reader to [18] or the recent
monograph [39] for a comprehensive introduction to DC.

DC was originally introduced for real time. Variants of DC have been developed for
discrete time, combinations of real time and discrete time [29,19] and abstract time [10,14],
where an arbitrary (commutative) linearly ordered group can be the model of time. Real-
and discrete-time semantics are best suited for applications. The more general abstract-time
semantics gives some technical advantages for theoretical studies.

Iteration, also known a¥leene starwas introduced to DC to facilitate the reasoning
about repetitive behaviour. Iteration is particularly important for the description of the
repetitive behaviour of timed automatain DC. It facilitates the translation of designs between
timed regular expressions, timed automata and DC! Bx@nds for the extension of DC
by iteration. In [7] we developed a method for designing real-time hybrid systems from
specifications written using a subset of D@hich consists of the so-callesimpleDC*
formulas. Simple D€formulas are sufficient to describe the behaviour of timed automata.
One can reason about the correctness of designs in terms of the semantié¢s ldbivever,
it would be more practical and interesting to be able to prove correctness syntactically. This
requires the development of a proof system for'DC

A Hilbert-style proof system for DC (without iteration) was first presented in [16]. This
proof system was shown to be complete for real-time DC relative to real-time ITL. Validity
in DC is not recursively enumerable and therefore no finitary complete proof system for
DC exists. A small non-recursively enumerable subset of DC was presented in [15}- The
completeness of a system with @rrule for abstract-time DC was shown in [10]. In [13] it
was shown that by adding a few axioms and (finitary) rules the scope af toenpleteness
of the system from [10] can be extended to DC with quantification over state as introduced
in [28] also known as higher-order DC (HDC or HODC, see [38], where HDC has other
useful features such as neighbourhood values [42] and super-dense chop [17] which we
omit here.)

In this paper, we study the deductive power of three groups of axioms and a rule for
iteration in DC which we add to a variant of thecomplete proof system from [10]. The
first group of axioms has been obtained from the axioms about Kleene star in propositional
dynamic logic (PDL, cf. e.g. [1]). It contains an induction axiom. This group was presented
in the precursor of this paper [5]. Some examples which demonstrate the working of this
group of axioms can be found in [20]. The second group contains an induction axiom too.
Unlike the first, its induction axiom is the instance about iteration of an axiom about the
general least fixed point operatewhich was introduced to DC in [28] and later studied
in [12]. This axiom corresponds féark’s rule as known from the modal-calculus [22].

This rule was formulated for DC in [28] too. The third group has a proof rule instead of
an induction axiom. Unlike the induction axioms, which are examples of a general pattern
occurring in the axiomatisation of Kleene star in other logics, that proof rule refers to
the DC-specific notion of state and its deductive power stems from the finite variability
requirement which is imposed on state in DC. The idea behind this rule was earlier used in
[15] to express a finite variability requirement on propositional temporal letters in DC.
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Fig. 1. A simple gas burner design.

We show that adding our third group of axioms, which includes the proof rule, to the proof
system fron]10] leads to anw-complete proof system for DCWe show that iteration is
definable in HDC and the correctness of the definition can be proved in the extension of an
w-complete proof system for HDC by the second group of axioms. We show that there is a
straightforward correspondence between the induction axiom of that second group and the
induction axiom of the first group.

To illustrate the working of our axioms, we employ the well-known simple gas burner
example taken from [41]. The DC formula

S = 0 > 60= (20 [ leak< £)) 1)

specifies that a gas burner can be inldakstate for no more than one-twentieth of the time

in any time interval that is at least 1 min long. Consider the gas burner design described by
the real-time automaton shown on FlgWe assume thétakis the initial state for the sake

of simplicity. In this desigieakbecomes detected within 1 s and leaks are separated by at
least 30 s. This can be specified by the'Ti@rmula

D = (([leaK] A £< D) ([nonleal A £>30))*. 2

In Section6 we give a proof oD = S by means of our axioms about iteration.

Both Sand D aresimpleDC* formulas. Validity is decidable for such formulas. This
implies that whether a design written in simple DG implementable can be decided
algorithmically. Furthermore, the validity of implications from simple Df6rmulas to DC
formulas of certain forms such as linear duration invariants (see [6,24,43]) can be checked
by a simple algorithm.

0.1. Structure of the paper

After a brief introduction to DC and its extensions by iteration and state variable binding
guantifier we present our axioms and rule about iteration and show that adding some of
these to a complete proof system for DC without iteration leads to a complete proof system
for DC*. Next we show that the proof rule can be replaced by each of the proposed induction
axioms in a complete proof system for HDC, where iteration can also be defined explicitly.
We illustrate the working of the proof rule by giving derivations of the alternative induction
axioms and show how one of them can be derived using the other. We show how the explicit
definition of iteration in HDC can be derived from our axioms about iteration and the
state variable binding quantifier too. In a separate short section we explain how one of the
proposed induction axioms can be obtained by translating a PDL induction axiom into DC.
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We derive some other interesting D@eorems in our system to illustrate its working too,
and use one of them in a proof 6f = § about the gas burner design. Finally, we discuss
work on the axiomatisation of iteration in related systems, summarise some decidability
results about the subset of D&nown assimple DC* which have been obtained either
independently or using connections with timed regular expressions and timed automata,
and make some concluding remarks.

1. Preliminaries on the duration calculus
Here follows the formal definition of DC.

1.1. Language

A DC vocabularyconsists otonstant symbols d, . . ., individual variablesy, y, z, . . .,
state variablesP, Q, ..., temporal variablesv, ..., function symbolsf, g, .. ., relation
symbolsR, ... andtemporal propositional lettergt, B, ... . The constant 0, additios

equality= and the temporal variabkeare mandatory in DC vocabularies.

Given a vocabulary, the definition of a DC language is essentially that of its sets of
state expressions, &rms tandformulas¢. These sets can be defined by the following
BNFs:

S:=0|P|=S|SVS,
tu=clx|v| [S]ft, ..., 1),
pu=A|RE, ....00 | ~@ | (@V Q)| (@ ¢)|Ixe.

Terms and formulas with no occurrences ofchop, nor of temporal variables, nor of
/[, are calledigid.

The set of the variables which have free occurrences in a forgisldenoted by* V (¢).
For sets of formulag’, FV (I') is defined a@wer FV (). The state variables occurring
freely in a formulap are assumed to be iRV (¢) too. All occurrences of state variables
are free in DC, but not in HDC.

1.2. Semantics

Our completeness results about Dé&pply to the abstract semantics which was defined
for DC in [10] after the semantics of ITL from [8]. The linearly ordered set of the reals is
the model of time in the original semantics of DC. The durations of real-time intervals are
non-negative reals with ordinary arithmetic on them in that semantics. In the abstract-time
case the durations form the monoid of the positive elements of some linearly ordered group
[32], and the time domain is isomorphic to a possibly unbounded interval in the same group.
Here follow the detailed definitions.

Definition 1. A time domairis a linearly ordered s, <).

(R, <), (Z, <) and(N, <) are examples of time domains.
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Definition 2. Given a time domaif7, <), we denote the set

{lta, t2] 11,12 € T, 11 <12}

of the closed and bounded intervalsTitoy | (T').

We use ( and ) to mark open ends of time intervals, for instajigerp) stands for the
semi-openintervalt € T : 11 <t < t}.

Definition 3. A duration domairis a system of the typeD, +©@, 0@} which satisfies the
axioms

OhHx+Gy+2)=x+y) +z

D2)x+0=0+x = x;

DO)Yx+y=x+z=>y=2z, x+z2=y+72=>x=Y;
DHx+y=0=>x=y=0;

(D5 Izx +z=yVy+z=x), Zz+x=yVz+y=ux).

For example{R, +, 0) and(N, +, 0) are duration domains, by, +, 0) is not, because

it violates D4. The axioms D1-D5 do not imply commutativity-ef(cf. e.g.[32]). How-

ever, to our knowledge, all practically relevant duration domains are commutative. Adding
commutativity to D1-D5 affects neither the validity, nor the proofs of the results in this
paper. In the sequel we assume that duration domains are linearly ordered by the relation

x<y=3zx+z=y). 3)
We regard< as a mandatory symbol in DC witB) being its definition.
Definition 4. Givenatime domaikrl’, <), and adurationdomaifD, +, 0),m : | (T)— D
is a measure if it satisfies the axioms

(M1) m([t1, 72]) = m([t1, T5]) = 12 = 153
(M2) m([t1, t]) + m([7, t2]) = m([71, T2]);
(M3) m([t1, 12]) = x + y = It(m([71, T]) = x).

Definition 5. An abstractDC frame is a tuple of the forrt = ((T, <), (D, +, 0), m),
where(T, <) is a time domain{D, +, 0) is a duration domain, ana : | (T) — D is a
measure.

The existence of a measure: | (T) — D clearly imposes restrictions aif, <). Some
linearly ordered sets do not admit such a measure for any duration domain.

Definition 6. GivenaDC vocabularly and an abstract DC franfe= ((T', <), (D, +, 0),
mY), aninterpretation ol into Fis a mappingd of L which satisfies the following conditions:

I(¢c), I (x) € D for constant symbols and individual variables;
I(f): D" — D for n-place function symbolg’;
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I(v) : 1(T) — D for temporal variables;

I(R) : D" — {0, 1} for n-place relation symbolg;

I1(P): T — {0, 1} for state variable®;

I(A) : 1(T) — {0, 1} for temporal propositional letters.

I10)=0,I(+)=+,I(=)is = andI(£) = m.
The following condition, known aénite variability of stateisimposed on the interpretations
of state variables:

For every[t1, 12] € |(T) such thatr; < 72, and every state variabl there exist
7,...,7, € T such thatry = 7] < --- < 1, = 12 and/(P) is constant on the
semi-open intervalgr;, t; 4),i = 1,...,n — 1.

Finite variability can be defined as piece-wise continuity @?) in the real-time case. This
is less restrictive but leads to the same notion of validity in DC.

Definition 7. Given DC vocabulary., a DCabstract model foL is a tuple of the form
M = (F, I) whereF is a DC abstract frame, arids aninterpretationof L into F.

Definition 8. Letsbe in some DC vocabulaty. Interpretation$ andJ of L into the same
abstract frame are said $eagreeif I(s’) = J(s') for all s’ in L, except possiblg.

Given intervalss1 andoy in the same time domain, we denatgU o, by 6102, in case
maxo1 = minay. This use of ™ in our meta-language is related but formally different from
its use in DC formulas. Since is associative, we omit parentheses in expressions with
consecutive occurrences of

Definition 9. Let (F, I) be an abstract DC model = (T, <), (D, +,0), m) and
7 € T. Then the valueg, (S) of state expressiorSin the vocabulary of are defined by
the clauses:

11:(0) - 0,
I.(P) = [ (P)(z) for state variable®,
Ir(_‘S) =1- I‘L'(S)s

1:(S1V §2) = max(I:(S1), I:(52)).

Given an intervab € | (T), the valued,(r) of termst are defined by the clauses:

15(¢c) = I(c) for constant symbols,

I:(x) = [ (x) for individual variablest,

15(v) = I (v)(o) for temporal variables,
Is([S) = [ [.(S) dr for state expressions

Is(f(t1, ..., ) = I(f)Us(t1), ..., I5(ty)) for n-place function symbolg.
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To define/ e 1:(S) dr, letn < w andoy, ..., o, € |(T) be such that = 617+ “a,
and/;(S) is constant for € [ming;, maxo;),i = 1,...,n. Then
O I (S)dT = 3 m(a;).

i=1....n, Iming, ($)=1

Clearly, this value does not depend on the precise choieg af. ., ¢,. The modelling
relation F is defined by the clauses:

(F,I),0 ¢ L
(F,I),0 F A iff 1(A)(o) = 1 for temporal propositional letters
(F,I),6 FE R(t1, ..., t,) iff I(R)(;(t1),...,1s(ty)) =1
(F,I),0 F —¢ iff (F, 1),k ¢
(F,I),6 F (p V) iff either (F, I),a E o or(F,I),a F
(F,I),0 E (7)) iff (F,I),01F @and(F,I),c2E
for someoy, o2 € | (TF) such thatv; o2 = o
(F,I),6 F Jxo iff (F,J),oF ¢ for someJ which x-agrees with/.

Sometimes it is convenient to work with the set of intervals which satisfy a formula. Let
(F, I) be a DC model wher& = ((T, <), (D, +, 0), m). Then we denote the set

loe(T):(F,1),0 F ¢}
by I(¢). LetX, Y C I(T). ThenX Y stands for the set

{61702 : 01 € X, 02 € Y, maxo1 = minaz}.
1.3. Abbreviations

The customarnynfix notation for+, < and=isused in DCT, A, = and&, Vv, #, >,
< and> are used in the usual way. We assume thainds less tightly than boolean connec-
tives. Since™is associative, we omit parentheses in formulas with consecutive occurrences
of ™. The following abbreviations are generally accepted in DC:

1=-0
[ST=[S=¢nt+#0
S =T T (there is a subinterval for whici holds
Qo = =3O (for all subintervalsp holds
P=t=0
ofk=0"...70 fork >0

—_——

k times

The temporal variablé is often introduced as an abbreviation ot. As usual, we write
ntfore 4+ ... 41¢.
—_— ——

n times
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1.4. lteration and quantification over stateC

DC is extended by iteration and quantification over state by allowing formulas of the
forms @™ and3 P ¢ whereP is a state variable, respectively. The relatignis defined on
such formulas by the clauses:

(F,I),0 F ¢* iff either m(0)=0, or there exish<w ando1, ..., 0, € | (TF)
suchthaiv1™... 7o, =cand(F,I),0; E pfori=1,...,n,
(F,I),c E 3P iff (F,J), o F ¢for somel which P-agrees with/.

Iteration* binds more tightly than and the propositional connectives.

1.5. Proof systems fa»C

Here we present the relatively complete proof system for DC f[b&) and thew-
complete system from [10], because our new axioms and rule about iteration are supposed to
work as additions to these systems. Next, we give the axioms and rules about quantification
over state in HDC. We use them together with our axioms about iteration to prove the
correctness of an explicit definition of iteration in HDC.

The Hilbert-style proof system for DC from [16] includes a proof system for first-order
logic with equality (cf. e.g. [31]), axioms and rules for ITL (cf. e.g. [7]) and some DC-
specific axioms and rules [16]. We assume that the readers are familiar with Hilbert-
style proof systems for first-order logic. Here follow the ITL- and DC-specific axioms
and rules.

1.5.1. Axioms and rules famL

(A1) (@ WA=V = (@A), (@) A=(070) = (97 A—p)
(A2) (")) & (9" 0)

R) (7 Y) = @, ") = ¢if pisrigid

(B) GExo7Y) = Ax(eY), W 3Ixe) = Y ) if x ¢ FV ()

(L) =x"¢) = —-(l=x"=0), (pTt=x)= —(—p L =x)

(L2) b=x+y l=x"1C=Yy)

(L3) p=U=079), p= (¢t =0

[ [
N s
D N ).
(Mono) o=>Y o=y

@ D=0 o) =uY

The presence of the modalifyand flexible symbols in ITL brings a restriction on the
use of first order logic rules and axioms which involve substitutjpft]e is allowed in
proofs only if no variable irt becomes bound due to the substitution, and eitlerigid
or ~does not occur ip. It is known that the above proof system for ITL is complete with
respect to abstract-time models [8].
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1.5.2. DC axioms and rules

(DC1) [0=0

(DC2) [1=¢

(DC3 [5>0

(DC4%) f S1+ f S> = f(Sl Vv §2) + f(Sl A S2)

(DCH (f[S=x"[S=y)=[S=x+y

(DC6) [ S1= [ S if Sy andS, are propositionally equivalent

(IRD) [t =0/Alg ¢ = [AV (AT[ST Vv [=S])/Alp

[T/Alp
(R2) [t =0/Alp ¢ = [AV ([STV [~ST1"A)/Alp
[T/Ale
THISTV =S = ¢ forall k < »
(@) Ir
®

The extension of the proof system for ITL by the axioms DC1-DC6 and the rules IR1
and IR2 is complete with respect to the real time based frame relative to the class of ITL
sentences which are valid in this fraffi®]. Replacing IR1 and IR2 by the infinitary rule
w leads to anw-complete system for DC with respect to the class of the abstract time
based models [10], which are considered in this paper. The induction rules IR1 and IR2
are derivable in the system which consists of the ITL axioms and rules, DC1-DC6 and the
infinitary rule w. Despite that, IR1 and IR2 are preferable for practical purposes because
they are finitary. Note that DC3 is redundant in our setting.

The rulew is part of anw-complete proof system, and-completeness is the equiv-
alence between the consistency and the satisfiability of sets of formulas. Consistency
means the impossibility to derivé in the proof system from the given set of formu-
las, which may be infinite. Since DC is not a compact logic, derivability from infinite sets
and derivability from a finite sets differ substantially. That is why we put down thezsirhe
the form

I-...

re...

wherel stands for a set of formulas, which may as well be infinite. We assume that other
proof rules included in the>-complete proof system have this form too. For instance, we
adopt the first-order logic lefi-introduction rule in the form

I'tIxep =y

@ TFrosy

wherex ¢ FV(I'), FV ().

Semantically,l'+¢ corresponds tcﬁ/\ F) = ¢, which may be impossible to write as a
single DC formula for infinitel .



D.P. Guelev, Dang Van Hung / Theoretical Computer Science 337 (2005) 278—-304 287

1.5.3. Axioms about quantification over statdd@
() [S/Ple = IP¢ whereS is a state expression

(B*) @PoY) = 3P0 Y), W 3IPp) = 3IPW @) if P ¢ FV();
() x=0veLxVAP([S1 & PIAL=x"[S2 & P));
I'tp =

¥ —
@) I'F3Pop =y’

whereP ¢ FV(I'), FV ().

The meanings oB*, 3} and3; are self-explanatory. The axioni states that, given two
statesS1 andS, and a chopping point which is internal to the reference interval, there is a
stateP which equalsS; on the left of the chopping point ant$ on the right. Recall here
that our definition of finite variability implies that states are right-continuous.

1.5.4. w-Completeness @C andHDC

A set I’ of DC (HDC) formulas is callectonsistentif L cannot be derived frond’,
and theorems of the above proof system for DC (HDC) using only the MRand w.
Consistency in DC implies consistency in HDC, because it is a conservative extension of
DC. Thew-completeness theorem for abstract-time DC is as follows:

Theorem 1(Guelev{10]). LetI" be a consistent set @C formulas in some vocabulary
L. Then there exists an abstract model M foand an intervals in its time domain such
thatM,cF @ forall o € I'.

The rulew facilitates the use of maximal consistent sets of formulas in the proof of
Theoreml. We use such sets to prove our completeness results fombB€therefore the
proof systems we consider are extensions of the system includilipeorem 1 applies to
the proof system for HDC which includes the axioms from Section 1.5.3 too [13].

2. Axioms and a rule about iteration in DC

We combine the axioms DQ-DC*"4 and the rule DC5 below into three groups. All the
groups include the axioms DT and DC2. Each group includes one of D& DC*4 and
DC*5.

(DC*1) ¢ =0= o*,
(DC*2) (" ") = ¢

The meanings of DTl and DC?2 are straightforward.
(DC*3) (" AY ™ T = WAl=0"T) V(" A=y~ @) AY)"T),

To understand the meaning of D& assume that some initial subintervabf the reference
interval o satisfies) andg*. Theng’ can be represented a§™. .. ~o;, wheren < w and
all the intervalsto = [ming, ming] = [ming’, mind’], ;x = 07"... 70}, k=1,....n,
satisfy ¢*, andr, satisfies) as well. Now depending on whether the lelastch thatr
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satisfies) is 0 or not,o satisfies either the left or the right disjunctive member affein
DC*3.

(DC*4) L =0v @ o) =) = (0" =),

DC*4 is an expression of the fact thate*) is the least set of time interval§ C |(T)
which satisfies the inclusion

[t=0UI(p)"XC X.
To put down the rule D&5, we need the formula
fp, Q) = =((TTOD VL=0T=01 A= ([Q] T)Vve=0).

This formula means that every maximal non-trivial subinterval of the reference interval
which satisfie§—Q7 satisfiesp too. Let

g(p, P) = f(p, P) Af(p, —P).

This formula means that all maximal non-trivial subintervals of the reference interval
which satisfy eithef P or [— P satisfyp too. Since these intervals form a finite partition
of g, if g satisfieg(¢p, P), then it also satisfie¢™. Here follows the rule itself:

I't("glp, PY B =y
T'F (@~ p* ) =y

To understand D, consider the simpler rule

I'tgle, P) =y
I'toe* =y

which can be derived from the instance of T8Cwith « and  both being¢ = 0. As
mentioned above, if a reference intervaatisfieg (¢, P), then the time points at whidh
changes its value insidepartition it into subintervals which satisfy, and therefore itself
satisfiesp*. Given aconcreteinterpretation ofP, the points at whiclP changes its value
define aconcretdfinite partition ofg, whereas fotr to satisfyp™ we just need thexistence
of such a partition. The role of the side conditibng FV (I" U {¢, }) is to handle this.
This side condition implies that the validity of

(DC*5) , WhereP ¢ FV(I' U {g, i, o, B}).

, WwhereP ¢ FV(I'U {¢p, y})

g(p, P) = (4)
is equivalent to the validity of
APg(e, P) = y. (5)

PuttingP in the scope ofl gives exactly what needed, becaussatisfiesp* iff there exists

a finite partition ofe into subintervals each of which satisfigsand a fresh state variable

P can always be chosen to change its value exactly at the dividing points of such a finite
partition. Hence the antecedent &) (s equivalent tap*. By putting down a proof rule
instead of the equivalence

IPg(e, P) & ¢*, (6)
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we axiomatise iteration in DC without resorting to the state variable binding quantifier.
Below we show how@&) can be proved in the system for HDC from Section 1 using the
axioms DC1, DC*2 and DC4 about iteration.

Note that the scope of the soundness ofD€DC*4 is, in fact, the extension ITLof
ITL by iteration, because these axioms involve no DC-specific constructs.

3. Completeness oDC*1, DC*2 and DC*5 for iteration in abstract-time DC*

Thew-completeness of the proof system for abstract-time DC which includes the axioms
and the rulan from Section 1.5.2 can be proved following the example from [10], which
on its turn builds on [8]. In this section, we prove that adding‘DMC*2 and DC5 to this
system leads to am-complete proof system for abstract-time DT he proof involves a
Lindenbaum lemmato extend the given consistent set of forniigltssa maximal consistent
setl” with appropriately chosen witnesses, the construction of a canonical ifbfilem
I' and a truth lemma to prove that a distinguished intervaMisatisfies all the formulas
from I" and, consequently, frorfip. The presence of iteration and BTG DC*2 and DC5
affects mostly the Lindenbaum lemma and the truth lemma. The rest of the completeness
proof is much like in [10] and therefore we skip most of the details.

3.1. Maximal consistent sets and the Lindenbaum lemma®&sr

The use of a maximal consistent set of formulas in the completeness proof for a quantified
logic involvesHenkin constantalso known asvitnessegor the existential formulas in the
set. In the case of first-order predicate logic the only existential formulas are those in
which the quantifier binds an individual variable. A consteig called awitnessfor the
existential formuledx ¢ in a set of formulad” if 3x¢ = [c¢/x]¢ € I'. Along with the
first-order quantifiefl, DC* implicitly involves two more kinds of existential formulas. The
finite variability requirement on state means that DC models validate the for@tla
w)([STVv[—ST* for every state expressi@The definition (6) of iteration in HDC involves
the quantifier prefi@P. We use maximal consistent sets which have witnesses for such
formulas, despite that they do not occur in Di@nguages explicitly. These witnesses are
freely occurring state variables which therefore can be regarded as constants, and formulas
of the form([ ST v [—=ST)* for concretek, respectively.

Definition 10. Let C be a set of constants and state variables. A set ¢f @nulasTl’
written in some vocabularly has witnesses in € for every existential formul&axe € I’
there is a constant € C such thatc/x]¢ € I', for every state expressidhwritten in
L there is ak < w such that([ST v [-ST)¥ € I' and for every formula of the form
(a"p*™p) € I there is a state variabRsuch thato"g(¢p, P)"p) € I'.

Lemma 1 (Lindenbaum lemnja LetL be a countabl®C vocabulary and g be a consis-
tent set oDC* formulas in this vocabulary. Let a set C consist of countably many constant
symbols and countably many state variables such ¢thatL = @. Then there exists a
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maximal consistent séic I'o of DC* formulas in the vocabulary UC which has withesses
in C.

Proof. This proof follows a general pattern known from numerous modal logics.

Let the set of all the DCformulas written in the vocabulaty U C be{p; : i < w} and
the set of all the state expressions frorw C be{S; : j < w}. We define the sequendg,

k < w of consistent sets of such formulas by inductiorkohy is as given in the theorem.
Sincel’p consists of formulas i and we obtain ;11 by adding finitely many formulas
written inL U C to I'y for eachk, we can assume that there are both constants and state
variables inC which do not occur i, for all k. To define the sequendg,, k < o, we

use a pair of functions;, 72 : @ — w such that for every pair, j < w thereisa < w
satisfyingny (k) = i andna(k) = j. Here follow the definition of ; for k > O:

Assume thatl"; has been defined for somte < w and leti = n1(k), j = wa(k).

If I't U {¢,;} is not consistent, theihy1 = I'x. Otherwise we consider the following
cases:
1. ¢, is the existential formul@xy. Then we choose a constang C such that does not

occur in the formulas froni’y and putl'y+1 = I'x U {¢;, [c/x]¥}. Assume thal ;1

is not consistent for the sake of contradiction. Then we Hauélxy/t—[c/x]yy. Since

c occurs neither i, nor iny, replacing it by a fresh individual variablewill give

Iy, Ixyt=[y/x]y again. This, by an application &f, will bring 'y, 3xyFVy—[y/x1,

which is a contradiction.

2. @;is(aY* 7). Thenwe choose a state varialflec C which does notoccur ifiy U{o; }
and putl'x+1 = I't U {¢;, («"g(, P)"B)}. Assuming thal s, ;o g, P)" ) =

L brings a contradiction by an application of the rule’BCHencel . 1 is consistent.
3. ¢; is T. Then we choose & <  such thatl'y U {([S;] Vv lr—-Sﬂ])l} is consistent

and putl'yy1 = ' U{([S;] Vv [{—|Sj]|)l}. Such anl exists because assuming that

I'iE=(TS;Tv [{—-S.,]|)l foralll < wimpliesthatl’; itselfisinconsistent by an application

of the infinitary rulew.

4. @, is of none of the above forms. Then we gut.1 = I'x U {¢;}.

Now let us prove that the uniafi = | J,._,, I« is consistent, has witnessedirJ C and
eitherp € I' or —¢ € I for every formulag written inL U C, which implies thatl" is
maximal.

To prove thatl” is maximal, assume thatis a formula inL U C and¢, —¢ ¢ I for the
sake of contradiction. Lety, k2 < w be such that is ¢, ,) and—¢ is @, - Then,
by the definition of the setby, I'maxi, k) IS inconsistent with botkp and—¢, which is a
contradiction.

The cases 1-3 of the inductive definition of the sequdngcelearly imply that/” has
witnesses irC.

Sincel ¢ I'; forallk, L ¢ I' as well. Hence, to establish the consistency pive just
need to prove thdt contains all the theorems of our proof system written in the vocabulary
L U C and is closed under the ruldsP and . The only non-trivial part of this proof
is about the closedness underLet ([STV [-S1)! = ¢ € I'foralll < w. LetSbhe
Sj, k < o be such thatta(k) = j and ¢, ) is T. Then there is ah < o such that

(Ts;71v |[—-Sj]|)l € I'y41 by the definition of this set, wheneee I'. [
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We intend to use the sétwhose existence was shown in Lemfnto construct a model
M for the vocabulanL U C so thatM satisfies the formulas fromh’" at a distinguished
intervalo. To define the interpretations of the symbols frony C at the subintervals of,
we intend to use sets of formulas of the form

(p:(=C"p)Al=C""T)el} (7)

for appropriately chosen constartsc” € C.

Lemma 2. LetI be a maximal consistent set of formulas written in the vocabulanyC
andc¢’ andc¢” be constants from C such thelt< ¢” andc¢” < ¢ € I'. Then(7) is a maximal
consistent set in the vocabulatyu C which has witnesses in.C

Proof. Let us denote the set (7) by. For every formulap either (¢ = ¢/ "p) A £ =
""T)y eTlor((f = =) AL = c""T) € I'. Hence for everyp eitherp € 4

or —¢p € 4 and therefored is maximal. To realise that has witnesses i€, note that
dxg € dis equivalenttdx(( = @) AL =c""T) e I, (a"¢*P) € 4is equivalent

to (£ = ") "p* (¢ = ")) e I for somec” € C suchthat” +c¢” =¢ € I', and
([ST1V [—=ST)! € I'implies([STV [—ST)" € 4 for somel’<I. L ¢ A and therefore the
consistency off follows from its closedness under the proof rules, which is established like
in the proof of Lemma 1. (J

3.2. The canonical construction for abstract-tiD€*

LetL andC be as in the previous section ahde a maximal consistent set of formulas
in the vocabulary. U C with witnesses irC. Let

c1=cp iffcgr=cel

for constants:1, c2 € C. Clearly,= is an equivalence relation on the constants fil@m
Let [¢] denote the=-equivalence class which contaiogor each constant € C. LetD
be the set

{[c] : cis aconstant irC}.
Let T be the set

{[c]:ceC,c<lell.
Let

[1<["iff /< eT.

Clearly, < is a linear ordering off and(7T, <) is a time domain. Let the mappirigoe
defined on the vocabulaty U C by the clauses:
1. I(x), I(d) € D forindividual variablescand constantd, and

Ix)={ceC:c=x€el}, Id)={ceC:c=dell.
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2. I(f): D" — D for n-ary function symbol$ and
I(f)(eal,....lea) ={c€C:c= fler,...,cn) €T}
3. I(R) : D" — D for n-ary relation symbolf and
I(R)([c1],....[cn) =1iff R(cy,...,cp) €T.
4. I(v) : I(T) — D for temporal variables and
1) (I, [) =fceC:(W=cv=c)Al=c""T)eTl}
5. I(A) : I(T) — {0, 1} for temporal propositional lette’sand
IA) ([[]. [N) =1iff (L=c"A) AL=c""T)el.
6. I(P):(T) — {0, 1} for state variable® and
1(P)Y([c) =1iff ¢ = [P]"T) el.

Alengthy but otherwise straighforward argument, which is standard for canonical models,
shows that the above definitions are corréex, 1 (0), 1 (+)) is a duration domairy,(£) is a
measure function fro(T) to D, F = ((T, <), (D, 1(0), I(+)), I1(£)) is an abstract DC
frame and is a DC interpretation of U C into F, which means that = (F, I) is an
abstract DC model fot U C. What makedv relevant is the following lemma.

Lemma 3 (Truth lemma. Leto < I(T) ando = [[c'], [¢"]] for somec’,¢” € C. Let
A={p: (L=c"p)Al=c""T)eT}. Then

I;(t)={ceC:t=ceAyand M,cF @iff p € 4

for every term t and every formulawritten in the vocabulary. U C.

Proof. The proof about terms is by induction on their construction. The proof about formu-
las is by induction on the lexicographical ordering of the paip$*, |¢|), where|p| denotes
the length ofp and||* = max{|y| : ¥ is a subformula ofp}. Since we are focussing on
iteration in this paper, we do only the induction step abpof the formy*.

Lety™* € A. 4 has witnesses i@ by Lemma2. This implies that there is a state variable
P e C suchthag(y, P) € Aandthereisah < wsuchthat[P]Vv [—P])* € 4. Letk be
chosen to be the least one with this property. Then we tig@e] ... T Q«1) € 4 where
01,...,0r € {P,—~P}andQ; isPiff Q;,_1is—P fori>2. Together withg(ys, P) € 4,
this implies that)* € A, which, by the induction hypothesis, implies thdt ¢ = y* and,
consequentlyM, o =y,

NowletM, o = y*. ThenM, ¢ = ¥ for somek < , whichimpliesthatt = 07y/*) € 4
for thatk. This impliesy™ e 4 by one application of D€L andk applications of DC2.

O

3.3. The completeness theorem

Now we are ready to prove the-completeness of our proof system for abstract-time
DC*.
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Theorem 2. Let I'g be a consistent set @C* formulas in theDC vocabularyL . Then
there is an abstracdDC modelMy for L and an intervals in the time domain oMg such
that Mg, aF ¢ for all ¢ € I'o.

Proof. According to Lemmal, I'g can be extended to a maximal consistent Bedf
formulas in the extensioh U C by a setC consisting of countably many fresh individual
constants and countably many fresh state variables. The sah be constructed to have
witnesses inC. Now consider the mode¥ = (F, I) which was constructed from such
a setl in Section 3.2. Let/, ¢” € C satisfy the conditions’ = 0,¢” = ¢ € I'. Then
¢ <c” e I'and the set (7) i$ itself. Then Lemma 3 implies that, [[¢'], [¢”']]F ¢ for all

¢ € I' and, in particular, for allp € I'g. To obtainMg from M, one only needs to replate
by its restriction to the vocabulaty. [

4. The interderivability between DC*3, DC*4 and DC*5

As seen in the previous section, the proof rule*B@s implicitly related to the state
variable binding existential quantifier in BCThe key ingredient in this rule is the formula
g(p, P). In this section, we first show that in HDC, which includes this quantifier, one can
prove the correctness of an explicit definition for iteration involving this formula by means
of the HDC-specific axioms and rules from Section 1.5.3 and the group of axioms about
iteration which consists of DT, DC"*2 and DC4. This means that DG can be regarded
as a derived rule in the extension of the proof system for HDC by the axiori$,iC*2
and DC4 about iteration. We also prove that DCis derivable from DC3 in the proof
system for DC without quantification over state. Furthermore, we prove th&8 @@d
DC*4 are derivable in the the proof system for DC which has the axionSLPQC*2 and
the rule DC5 about iteration. Taken apart from the other axioms about iteratiofi4 xC
weaker than DC3. We give no proof of DC3 in a system with DC4 being as the induction
axiom.

In the deductions below we give in detail only the steps which involve iteration- and
state-variable-quantifier-specific axioms and rules. We skip the detail on other steps and
mark them by “DC” to indicate that they can be made in DC with neither iteration, nor state
variable quantifier.

Proposition 1. Let P ¢ FV(¢). Then
APg(p. P) & o

is provable in the extension of the proof systemH&®C by the axiom®C*1, DC*2 and
DC*4, and also in the extension of this proof systenbigy/ 1, DC*2 and DC*3.

Proof. Here follow deductions ofp* = 3JPg(¢p, P) and3Pg(p, P) = ¢* involving
DC*4.
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¢* = IPg(p, P):
1 (g(p, P) 0) =

=g, P)voVvIx(x #0Ax <L A(glp, P)ANL=Xx"0))

290==0Vv (1T Ao
3¢4=0=g(p, P)
4 1N Ae=3P(PTAQ)
STPIA¢= glo, P)
6 3P([P] A @) = 3Pg(p, P)
7 @ = g(p, P) Vv 3IPg(ep, P)
8x#0Ax <f=300l=xA[Q < P]TQ < 0])
9x#A0Ax <l=30U=xAJO < P10 < 1]
10 x #LA (g, PYANL=Xx"0) =
< &, PYAN(TTPHAE= x“qo)\/)
(@, PYA(TTT=PDAL=x"0)
L=xAJQ < P] Q< 0DA
H ((g((p, PYA(TTPT) AL =x"g) ) =
= (8. D) A(TTOD @A T=0T)
12 (g, DA (TTOD @ A T=01) = g, Q)
=xAJ0Q < P]TO < 0DHA
13 <<g(<p, PYA(T TP AL = m))) = 30e(¢. 0)
1430t =xA[Q & P10 & 0] =
= ((g(@, PYAN (TP AL =x"9) = I0g(p, Q))
15x #0Ax <€A @E@, P)A(TTPYAL=x"0) =
= 30¢g(p, Q)
16 x #0Ax <l A(gle, P)A(T =P AL=x"p) =
= 30g(p, 0)
17 x #0Ax <l A (g(p, P) Al =x"¢p) = 30g(p, O)
18 3x(x Z0Ax < £ A (g(p, P) AL =x"¢)) = 30g(p, Q)
19 (g(@, P)" @) = g(@, P) v IPg(p, P) v I0g(p, Q)
20 30g(p, Q) = APg(e, P)
21 g(p, P) = 3APg(op, P)
22 (g(p, P)"¢) = 3Pg(e, P)
23 AP (g(e, P)" @) = IPg(o, P)
24 3Pg(p, P)"p) = IP(g(p, P)"¢)
25 (3Pg(p, P)"¢p) = IPg(op, P)
26 ¢ =0= 3Pg(p, P)
27 ¢ =0v (3Pg(p, P)"¢p) = 3IPg(p, P)
28 O =0V (3Pg(p, P)"¢) = IPg(p, P))
29 ¢* = APg(p, P)

dPg(p, P) = ¢™:
1g@.PH)A(PIVI-PDf= V ¢ k<o DC

1<k
2 ¢l & (£ =09 [ <, DC

3 (U=09¢"= ¢ | < w, DC*1, DC*2, DC

DC
DC

DC

HS

DC
53,3
2-4,6,DC

S

)

DC

DC
DC

11,12, DCH

13,DC

8,14,DC

like 15, but
using 9 instead of 8
10, 15, 16, DC
17,DC
1,7,18,DC
3,3}, DC

3

19, 20, 21, DC
22,3

BS

23,24,DC
3,35, DC

25, 26, DC
27,DC
28,DC4,DC
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4 ([P1V [-PD* = (g(p, P) = ¢*) k <w, 1-3,DC
5 g(p, P) = ¢* 4,
6 3Pg(e, P) = ¢* 5,3

A deduction ofp* = 3Pg(¢p, P) can be obtained using the instance of BQvith
being—3g(¢p, P). We skip it here. [J

Proposition 2. DC*4is provable in the extension of the proof systent¥@rby justDC*3.

Proof. Here follows a deduction of D@ involving DC"3:

1Lo" A=Y= (" A—y7T) DC

2 (A=Y T) = U=0A=Y"T)V (¢* Ay @) A—)"T) DC*3
30U=0vW o) =y)=>—-L=0A-y"T) DC

4 (" AY"Q)A=Y"T) = (Y "o) A—=Y~T) DC
S5UE=0vVy )=y =~() ) A=y~T) DC

6 0=0V Y p) =) = (¢* =) 1-5,DC [

Proposition 3. DC*3 andDC*4 is provable in the extension of the proof systenTiGrby
the axiomdC*1, DC*2 andDC*5.

Proof. Here follows a deduction of D@ involving DC*5:

1(PIV[-PDFAg(@. P)= \ ¢ k <, DC
1<k
2 =(=0AY " THAQ! = (@* A= b I<w, DC*1, DC
3=(=((@* A=Y~ @)=Y " TIA@* A=Y " TH=(p* A=) "@™)  m<w, DC*2,DC
4=(=0AY " TIAQ A= (—=((@* A~y ~P)=—) " T)A=—Y I<w,2,3,DC
(TP1V [=PD* g, P) A= (e =koﬂm> ~
5 <ﬂ(ﬂ(((p* A= Q) = )T = - k <w,1,4,DC

68(@. PYA=UL=0AY"T)A=(—((@* A=Y "@) = —Y)"T)= - 5w
7= =0AY"T)A=(=(@* A=) = )" T) = (p* = —y)  6,DC'5

8P * AN Y= U=0AY"T)V{(Q* A=Y ") AY™T) 7,DC
QP*AY T = U=0AY T T)VUQ* A=Y"Q) AY"T™T) 8,DC
0@  AY"T) = U =0AY"T) V(@ A=Y"Q) AY™T) 9,DC
Here follows a deduction of D@ involving DC*5:
1 ([P1VI-PDFAgle,. P)= \ ¢ k < w, DC
1<k
200 =0V o) =)Ao = W eh [ <, DC
30U=0V W 9) =) AWY e"h = ™) m <, DC
400¢=0Vv ) =)Ao=y | <w,3,DC
5 ([P1V [=PDr=(gle, P)=OE=0Vv " 9) = y) = ¥)) k<w1,2,4,DC
6 glo, P)= U=0VY )=y =) 5w
7 ¢o*= U=0Vv WY p)=y) =) 6, DC*5

8O =0V W p) =)= (9" =) 7,DC O
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5. DC*3 as a translation of aPDL induction axiom

The origins of the axiom D& and the rule DE5 were given in the Introduction. In
this section, we point to a certain degree of semantical compatibility between the mod-
els for ITL and the models for propositional dynamic logic (PDL). We give a truth-
preserving translation of PDL formulas into ITL formulas that is based on this semantic
correspondence. We show that the axiom*B€an be obtained by means of this transla-
tion from an induction axiom known from PDL. Basic definitions about PDL can be found
in, e.q.,[1].

Let us assume that set of the time poifiitf some abstract ITL framg& = ((T, <), (D,
+, 0), m) is also the set of the possible worlds of some PDL frame. Consider a PDL vo-
cabulary consisting of the set of propositional letté@nd the set of relation letteRs Let
v be a PDL valuation of the vocabulaB/U R into the PDL frame based on that is, let
v(p) C T forpe Pandv(r) C T x T forr € R. Let us consider only PDL valuations
which satisfy the condition(r) € < forr € R. Sinceldr € <,andR, S C < implies
RUS,Ro SandR* C <, we can assume that the standard extensiaosfssuchv over
relation terms give only subrelations &f too.

Assume thaiT, <) is bounded, that is, Ié&f = [minT, maxT] and consider an ITL
vocabularyL whose set of temporal propositional lettersPis) R. We are not interested
in specifying the rest of . Given the PDL valuation, we can define an interpretatibof
these temporal propositional letters iftdoy putting

I1(p)([t1, 2]) = 1iff 71 € v(p) andty = maxT for p € P;
1(r)([t1, T2]) = 1 iff (t1, 72) € v(r) for r € R.

Let the translation of the PDL language based on the vocabulBry R into the ITL*
language based dnbe defined by the clauses:

(L= 1
t(q) =qforge PUR;
tlo V) =t(@)Vi@)
1(—p) = ()
t(dd)y=¢=0
taUpf) = t(a) vip)
1o f) = t()7t(f)
(o) = (t(2)*
1({o) ) = ()" 1(9))
The following proposition explains the correspondence between the PDL model based
onT andv, and the ITL modelF, I) usingt:

Proposition 4. Let ¢ be aPDL formula in the vocabulary? U R. Then
T,v,minTE g iff (F,I),[minT, maxT]Et(p).

Proof. Direct check by induction on the constructipn [
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PDL has the following induction axiom about iteration in its proof sysfgn

[ (o = [alp) = (@ = [«"]@).

Thet-translation of this axiom is equivalent to

O (@ Y)Yy A=) V(@ TY) = ), (8)

whereys stands for-g.

The validity of the PDL induction axiom enforcés(x))* 2 o(«*) on the frame level
and therefore characterises iteration the way local correspondents do in modal logic (cf. e.qg.
[33]). Characterisation on the frame level assumes the freedom to choose interpretations into
a fixed frame and generally does not imply deductive characterisation. The corresponding
inclusion about iteration in DCis enforced on the frame level by D&, which can be
obtained from (8) by replacing its subformulas withof the form (¥ A x2) by (11 A
Y "»), and some simple ITL transformations. To understand this replacement, note that the
satisfaction of formulas of the kingt; " A ) atan intervab in a modeM depends on the
set of those € ¢ for which M, [t, maxa] E . However, such a set of time pointgan be
defined by a condition of the form, [min g, 7] =/’ for some appropriat¢’ as well. The
move from(y; W A o) 10 (1 A Y " xo) facilitated the proof of the completeness of a system
for DC* with DC*3 in it for subsets of DCin [10,13] and the precursor of this paper [5]. To
achieve deductive characterisation, the benefit fchoosingnterpretations as allowed on
the frame level can be supplied figdingformulas with appropriate meanings. In the case
of DC*3 the scope of the result from [5] is limited by our ability to find formulas/hich
approximatep* for ¢ in the considered subset and argue that the respective instances of
DC*3 forcep* to have the right truth value.

The axioms DC1 and DC?2 can be obtained by the same translation from the PDL
axioms[o*]p = ¢ and[a*]p = [a*][«]@, respectively.

6. Some more examples of the use &C*1-DC*5

The interderivability proofs from Section 4 illustrate the working of our axioms and proof
rule. In this section, we give derivations for a couple of*'iBeorems of general interest
and use one of them in a proof about our introductory gas-burner example in order to give
some such illustration with a practical flavour.

Here are two derivations of the monotonicity of iteration. One of them involves&3DC

A=Y = (R AL=0"T) Vv (((o* A B o) A =f7T) by DC*3

= (((0* A B 7o) A=BH7T) by DC*1
= (= ABHTT by DC*2
ando = f§

=1
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The other involves the proof rules and DC'5:

1LAPIVI-PD = (g(oc, P) = <D(:x:> P =V /31)) k <w,DC

1<k

2 "= pr m<w, DC*1, DC*2, DC
3([PIVI-PDF= (g, P) = O= p) = ) k<w, 1,2 DC
4 g(o, P) = (0= p) = B9 3,
50 = (O@=p) = 5 4, DC*5
6 D= p) = (= )
Here follows another useful DGheorem:
Focr U@ = —~(T™—a) A=(=f"THA
O¢=0=anp) AOB=~(T"-)) = 9)

= ¢* = 0@ Vv (9" ).

To prove it in our system, below we give a derivationgdf= CI(y v («"¢p*f)) using

0= —~(T=0), 0= —=(=fT).f=>~(T—pandl=0=u=0=f

as assumptions. TheB)(will follow by the deduction theorem for DC [18].

1¢p=—(Tw
2 o= —-(T=(x¢=0))

3¢=0= o¢*
4 o= —(T=("¢")
50=0=u

6¢=0==0*¢=0)
70=0= (0"
8 (T™=("¢p*) =—£=0
9 =((T™=(z"p*) AL =0"T)
10 (¢* A (T7=(09"))) =
(T™=("p*) AL =0"T)v
(@* A=(T7=("0*) " Q)N
(T™=("*)"T)
11 (" A=(T7=(" ™) "IN
(T™=("9") =
(T (™9™ ) A=(a" ™)V
(@ A (T7=(a"9™))))
12 («"¢* ") = (07 ¢")
13 = (™9™ ") A —=(a" "))
V(e A (T7=("9")
14 =(T7(("¢* ") A —(a" "))
V(Q A (T7=(a"9*))))
15 =((¢* A =(T7=(" ") "p)A
(T™=("9")))
16 ¢* = =(T=(a"¢"))

assumption

by 1

by DC*1

by 2, 3,Mono
assumption

L2

by 5, 6, DC'1, Mono
by 7, DC

by 8, N

by DC*3

DC
by DC*2, Mono

by 4, Mono, 12
by 13,N

by 11, 14
by 9, 10, 15Mono
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17 o* A (=(e™ B~ T) =

(=@ P~ THAt=0"T)v

(((@" A=(=(@* BTN @) A (=(*"H)~T)"T) DC*3

18¢=0=p assumption

19 ¢=0= o* DC*1

20 L =0= —(—=(p*pH~T) 18, 19, DC

21 ~((~(@* P)"T) AL =0"T) 20, DC

22 =(((@* A=(=(e™ B)" TN ") A (—(@*H)~T)"T) bC

23 ¢* = =(=(¢* AT 17,21,22,bC
24 B= —=(T™=) assumption

25 ¢* = OOV (0" 9* ) 16, 23, 24, DC.

Now let us prove the correctness of the gas-burner design from the introduction as a last
example of the working of our DCaxioms and rule. We have to give a derivation for

((Tleak] N <) ([nonleak] A £>30)* = O£ >60= ZOfleakSE).

Let

¢ = [leak] AN £< 1 [—leak] A €230,
ao=L=0V [—leak] Vv ([leak] A £ <1 [—leak] A £>30),
p,y=L=0Vv (U<LLA[leak]t =0V [—leak]).

The formulas
O(p = (T =a) A—=(=p"T)), Ol =0=anp)andf = —=(T =)

are valid in DC without iteration. Therefore we can complete our derivation u€ing (
provided we can derive

y = 20 [ leak <t and(o"¢p* ) A £=>60=> 20 [ leak < L.

The first formula is straightforward to derive without DSpecific axioms. Here follows a
derivation for the second formula:

1 oc:>31fleak<€ DC
2 ¢* A31[leak > £ = (¢p* A31[leak > ¢~T) DC
3 o= 31fleak<t DC

4 (¢p* A3L1[leak > £7T) =

L=0n 31f leak > £~T)Vv

(((¢* A 31 [ leak <¢~p) A 31 [ leak > ¢)~T) by DC'3
56:0:>31fleak<€ DC
6 (p* A31[leak > ¢7T) =

(((p* A31[leak<t"¢p) A31[leak > £)"T) by4,5 Mono

7 (¢* A31[leak <L) = 31 [ leak <¢ by 2,3, DC

8 ¢p* = 31fleak<£ by 6, 7,Mono

9 (x~¢*) = 31/ leak <£ by 1,8, DC
10 f = [leak<1 DC

11 («"@* ) A =60= 20 [ leak <t by 9, 10, DC.
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7. Related work on the axiomatisation of iteration

Iteration is known aghop-starin Moszkowski's original discrete-time ITL, where it is
regarded as part of the basic system. Unlike real- and abstract-time DC, finite variability
is a trivial property in bounded discrete time intervals and therefore discrete-time ITL is
recursively axiomatisable, whereas in DC one has to settle for relative completeness or
bring in w-rules like in this paper. Apart from that, the axioms TIEDC"4 are valid in
discrete-time ITL too and can be derived in its proof system. The rul&DRowever, is
new and DC-specific. An analogous rule can, in principle, be put together for discrete-time
ITL too by writing a formula with a meaning like that éfp, P), but we do not know this
to have been worked on.

Another difference with discrete-time ITL is the adoption of kbeality principlethere.

This means that the truth values of propositional temporal letters depend only on the begin-
ning point of the reference interval. The locality principle makes propositional discrete-time
ITL equivalent to (untimed) regular expressions in both expressive power and complexity.
We should note the recent advances in both the axiomatisation and the decision procedures
for discrete-time ITL fron]27] where both issues are elegantly handled using a proposed
hierarchical complete proof system. The role of propositional temporal letters with the
locality principle can largely be taken by DC state variables, which means that the decid-
ability results about the duration-free subset of simple DC known afRfjesubset of DC

from [40] look akin to some earlier results on propositional discrete-time ITL. By contrast,
adding propositional temporal letters without the locality principle to [ti#g-subset of

DC renders it non-recursively axiomatisable [14].

8. Discussion on the decidability results for simpleDC*

As said in the introduction of the paper, representing the repetitive behaviour of real-time
systems is the main motivation for introducing the iteration operatoiD@oAn important
subset of DC for this purpose has been introduced in [7] as the class of so-caitgule
DC* formulas, whose syntax can be defined by the BNF

pu=[STla<t|L<al (Vo) (@A) | (0 o) | ¢* (10)

In this section, we discuss the decidability of the satisfiability of simplé Bx@mulas at
the real-time frame, i.e. the frame in which the time domaitRs <) and the duration
domain is(R, +, 0).

One of the notions in the literature that are close to our notion of simplei®i@e notion
of timed regular expressionigtroduced by Asarin et a[3], a subset of which has been
introduced by us earlier in [23]. Simple D@ormulas syntactically correspond exactly to
timed regular expression, and their semantics coincide. Therefore, a simploilila
can be viewed as a timed regular expression. It was shown in [3] how from a timed regular
expressiork one can build a timed automaténwhich recognises exactly the modelstof
and has only constants froEin the constraints for its clock variables (guards, tests and
invariants). It is well known that emptiness is decidable for timed automata with integer
constants in their guards and tests [2]. This entails the following theorem:
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Theorem 3. The satisfiability of formulas with the synt@0)in which a stands for integer
constants is decidable

The complexity of the decidability procedure, however, is exponential in the size of the
constants occurring in the clock constraints (see e.g. [2]).

In [3] it is also shown how given a timed automatdnone can build a timed regular
expressiort and a renaming of the locationsAbuch that each model &fis the renaming
of a behaviour of\. In this sense simple DTformulas and timed automata have the same
expressive power.

If we restrict ourselves to the class sfquentialsimple DC* formulas, which can be
defined by the BNF

pu=L=0[[STloVvel|l@ @l lorall]|pAtl<a,

then we can have a very simple decision procedure for satisfiability and some interesting
results. Since the operatorsand A distribute overv, and because of the equivalence
(pV)* & (p* Y*)*, each sequential simple D@rmulag is equivalent to a disjunction

of v-free simple formulas. Sucheis satisfiable iff at least one of its disjunctive members

is satisfiable. The satisfiability of-free sequential simple DCformulas is very easy to
decide indeed. Let mi{ip), max(¢) € R be defined for sucky by the clauses

min(¢ = 0) = max(¢{ = 0) =0,

min([ST) = 0, max[S$7) = oo,

min(p,~¢@,) = Min(g,) + Min(p,), Max(@;~¢,) = Max(@;) + Max(e,),
min(¢*) = 0, If max(¢) > 0 then maxg™) = oo otherwise magp*) = 0,
min(ep A a<£) = maxmin(), a}, max e A a <f) = max(p),

min(p A £<a) = min(g), max g A £ <a) = min{max(p), a}.

Obviously ¢ is satisfiable iff mirie) < max(¢).

In [23,24], we have developed some simple algorithms for checking a real-time system
whose behaviour is described by a ‘sequential’ timed regular expression for a linear duration
invariant of the form

O <a<£<b = chS<M> ,
SeS

whereS s a finite set of state variables. Because of the obvious correspondence between
sequential simple DCformulas and sequential timed regular expressions, these algorithms
can be used for proving automatically the implication from a sequential simpléd@ula
to a linear duration invariant. An advantage of the method is that it reduces the problem to
well-understood linear programming problems. Because of this advantdgg,we tried
to generalise the method for the general simple* B@mulas, and showed that in most
cases, the method can still be used for checking the implication from a simgléobula
to a linear duration invariant.
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9. Concluding remarks

The contribution of this paper is to show that iteration can be defined and/or axiomatised
(relatively) completely iquantified systemaf DC with some support from the notion of
finite variability of state which is more deeply seated in DC. This approach helps to identify
and restrict finite variabilityof stateas DC’s only source of recursive unaxiomatisability,
which can be regarded asicompletenesi the sense of Gddel. Having the infinitary
rule about the finite variability of state, the class of duration domains targetted by our
completeness theorem can be narrowed down to each of the practically important domains
(R4, 0, +) and(N, 0, +) by enforcing other principles which defy recursive axiomatisation
with no further infinitary additions. For instance,

x=0Vv ({<x)*

means that there are no intervals with “infinitely smatidv-standariidurations, which is

one possible form of the “the missing part” in the relatively complete axiomatisation with
respect to real time frofd6]. By extending arithmetic with multiplication and division and
the real-closed field axioms about them (cf. e.g. [31]) this axiom can be shown to entail
theprinciple of Archimedewhich rules out “infinitely large” real numbers. As for discrete
time,

(L =1A—(#£07¢#0)*

means that every interval is a finite union of unit intervals which themselves have no internal
points.

Finite variability of state does not seem to be helpful enough for the axiomatisation of
the general least-fixed-point operatoin DC as known froni28]. For the time being, the
method from [11], which is similar to that from the precursor [5] of this paper, allows us to
do only subsets of HDC witjn.
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