72 research outputs found

    Development of an olive phenological model in relation to air temperature

    Get PDF
    The effect of air temperature on olive phenological development has not been extensively studied. Indirectly related data are available, mostly from air pollen concentration measurements rather than direct observation of phenological stages. Data on phenological stages of olive collected in Sicily, by the Sicilian Agrometeorological Service (SIAS), in 10 locations characterized by different climatic conditions were used to develop and calibrate a phenological model for the most important developmental stages in olive. Phenological stages under study were: bud break, inflorescence emission, and full bloom A base-temperature linear model was developed by choosing a temperature threshold using as optimization criteria the Mean Bias Error (MBE) and the R2 of the relationship between observed vs. predicted phenological stage dates. A model with base temperature of 12\ub0C was found to be the best predictor for all initial phenological stages. A more detailed analysis within each single phase showed a decreasing performance compared to predictions performed on the whole period (January 1st to full bloom). Highest displacements of model predictions from observed values occurred starting from bloom, whereas bud-break predictions had the best fit, with lowest residuals. This difference in the predicting ability of the model in different phenological stages could be ascribed to the stronger limitations by low temperatures that can occur early in the season, as for bud-break stage

    MICROMETEOROLOGICAL AND SAP FLOW MEASUREMENT OF WATER VAPOUR EXCHANGES IN OLIVE: SCALING UP FROM CANOPY TO ORCHARD

    Get PDF
    A comparison of water consumption evaluated at tree and orchard level was carried out in a commercial olive orchard located in Sicily using up-scaled sap-flow evapotranspiration estimations and eddy covariance measurements. Sap flow probes were installed on olive trees placed in one of the four plots characterizing a heterogeneous orchard. Trees were chosen, from a preliminary footprint analysis, in correspondence to the peak of the “relative normalized contribution” to flux for the prevailing wind conditions measured by an eddy covariance station localized in the central part of the orchard. Tree-age and planting density as well as main tree and orchard characteristics (Leaf Area per tree, within plot distribution of Trunk Cross Sectional Area TCSA, height and canopy diameter), were used to characterize the plot-to-plot differences. Both TCSA and LAI adopted as scaling parameters showed a high performance. A good agreement between ETec (daily integral of EC-estimated evapotranspiration) and ETsf (up-scale sap flow ET estimate) was found in correspondence of limited canopy or soil evaporation conditions (absence of rain, dew, irrigation supply). Eddy covariance can be considered a reliable reference for up-scaled sap flow estimations of ET, and sap flow can be used as a replacement (proxy) of eddy covariance when atmospheric conditions invalidate the application of this technique to assess ET

    Safety and effectiveness of gemcitabine for the treatment of classic Kaposi’s sarcoma without visceral involvement

    Get PDF
    Background: Classic Kaposi’s sarcoma (CKS) is a rare, multifocal, endothelial cell neoplasm that typically occurs in elderly people with previous infection by human herpes virus-8. Prospective trials are rare, and the choice of drugs relies on prospective trials performed on HIV-associated Kaposi’s sarcoma (KS). Pegylated liposomal anthracyclines and taxanes are considered the standard first- and second-line chemotherapy, respectively. Despite the indolent biologic behavior, the natural history is characterized by recurrent disease. This condition of chronic administration of cytotoxic drugs is often associated with immediate/long-term adverse events. Methods: This was an observational, retrospective study to evaluate the effectiveness and safety of gemcitabine in patients with CKS. From January 2016 to September 2021, the patients were treated with gemcitabine 1000 mg/m2 on days 1 and 8, with cycles repeated every 21 days. The treatment was administered as first or second line. Results: Twenty-seven (27) patients were included in the study. Twenty-one (21) out 27 patients (77.8%) achieved a partial response (PR), including 8 patients with major response (MR) (29.6%) and 13 patients with minor response (mR) (48.2%); 2 (7.4%) showed a complete response (CR), 3 (11.1%) a stable disease (SD), and 1 (3.7%) a progressive disease (PD). Tumor responses were generally rapid, with a median time to first response of 4 weeks (range, 3–12 weeks). Patients who responded had disease improvement with flattening of the skin lesions, decrease in the number of lesions, and substantial reduction in tumor-associated complications. Median duration of response was 19.2 months. Common adverse events were grades 1/2 thrombocytopenia, and grade 1 noninfectious fever. No patient discontinued treatment as a result of adverse events. Conclusion: Our study showed that gemcitabine is effective and well tolerated, acts rapidly on cutaneous lesions, and allows substantial symptom palliation, without dose-limiting toxicity. Gemcitabine represents a safe and effective option for the treatment of CKS

    Impact of deleterious variants in other genes beyond BRCA1/2 detected in breast/ovarian and pancreatic cancer patients by NGS-based multi-gene panel testing: looking over the hedge

    Get PDF
    Background: Hereditary breast cancer (BC), ovarian cancer (OC), and pancreatic cancer (PC) are the major BRCA-associated tumours. However, some BRCA1/2-wild-type (wt) patients with a strong personal and/or family history of cancer need a further genetic testing through a multi-gene panel containing other high- and moderate-risk susceptibility genes. Patients and methods: Our study was aimed to assess if some BC, OC, or PC patients should be offered multi-gene panel testing, based on well-defined criteria concerning their personal and/or family history of cancer, such as earliness of cancer onset, occurrence of multiple tumours, or presence of at least two or more affected first-degree relatives. For this purpose, 205 out of 915 BC, OC, or PC patients, resulted negative for BRCA1/2 and with significant personal and/or family history of cancer, were genetically tested for germline pathogenic or likely pathogenic variants (PVs/LPVs) in genes different from BRCA1/2. Results: Our investigation revealed that 31 (15.1%) out of 205 patients harboured germline PVs/LPVs in no-BRCA genes, including PALB2, CHEK2, ATM, MUTYH, MSH2, and RAD51C. Interestingly, in the absence of an analysis conducted through multi-gene panel, a considerable percentage (15.1%) of PVs/LPVs would have been lost. Conclusions: Providing a multi-gene panel testing to BRCA1/2-wt BC/OC/PC patients with a strong personal and/or family history of cancer could significantly increase the detection rates of germline PVs/LPVs in other cancer predisposition genes beyond BRCA1/2. The use of a multi-gene panel testing could improve the inherited cancer risk estimation and clinical management of patients and unaffected family members

    Numerical and experimental transition results evaluation for a morphing wing and aileron system

    Get PDF
    A new wing-tip concept with morphing upper surface and interchangeable conventional and morphing ailerons was designed, manufactured, bench and wind tunnel tested. The development of this wing tip model was performed in the frame of an international CRIAQ project, and the purpose was to demonstrate the wing upper surface and aileron morphing capabilities in improving the wing tip aerodynamic performances. During numerical optimization with ‘in-house’ genetic algorithm software, and during wind tunnel experimental tests, it was demonstrated that the air flow laminarity over the wing skin was promoted, and the laminar flow was extended with up to 9% of the chord. Drag coefficient reduction of up to 9% was obtained when the morphing aileron was introduced

    Prevalence and Spectrum of Germline BRCA1 and BRCA2 Variants of Uncertain Significance in Breast/Ovarian Cancer: Mysterious Signals From the Genome

    Get PDF
    About 10–20% of breast/ovarian (BC/OC) cancer patients undergoing germline BRCA1/2 genetic testing have been shown to harbor Variants of Uncertain Significance (VUSs). Since little is known about the prevalence of germline BRCA1/2 VUS in Southern Italy, our study aimed at describing the spectrum of these variants detected in BC/OC patients in order to improve the identification of potentially high-risk BRCA variants helpful in patient clinical management. Eight hundred and seventy-four BC or OC patients, enrolled from October 2016 to December 2020 at the “Sicilian Regional Center for the Prevention, Diagnosis and Treatment of Rare and Heredo-Familial Tumors” of University Hospital Policlinico “P. Giaccone” of Palermo, were genetically tested for germline BRCA1/2 variants through Next-Generation Sequencing analysis. The mutational screening showed that 639 (73.1%) out of 874 patients were BRCA-w.t., whereas 67 (7.7%) were carriers of germline BRCA1/2 VUSs, and 168 (19.2%) harbored germline BRCA1/2 pathogenic/likely pathogenic variants. Our analysis revealed the presence of 59 different VUSs detected in 67 patients, 46 of which were affected by BC and 21 by OC. Twenty-one (35.6%) out of 59 variants were located on BRCA1 gene, whereas 38 (64.4%) on BRCA2. We detected six alterations in BRCA1 and two in BRCA2 with unclear interpretation of clinical significance. Familial anamnesis of a patient harboring the BRCA1-c.3367G>T suggests for this variant a potential of pathogenicity, therefore it should be carefully investigated. Understanding clinical significance of germline BRCA1/2 VUS could improve, in future, the identification of potentially high-risk variants useful for clinical management of BC or OC patients and family members

    Exploitation of adaptive trailing edge architectures to small aircraft

    No full text
    Airfoil camber adaptation may be the key for the performance improvement of wings for many specific applications, including shorter take-off distance, compensation of weight variation and so on. Following the successful experiences gained in SARISTU, where an adaptive trailing edge device was developed for medium to large size commercial aircraft, the authors propose to exploit the developed architecture to a small aircraft wing. The basic reasons behind that mainly rely on the associated possibility to access easier implementation onto a real aircraft instead of referring to wing segments for wind tunnel or ground tests. In this way, many operative problems are faced, that would be otherwise neglected in usual lab experimentation. First of all, the integration of the proposed device onto a flying machine, that in turn pose the problem of facing the interface with the existing systems. Secondly, the necessity of including the device into the flap while fully preserving its current functionality. Furthermore, the necessity of developing a robust design process that allows having the release of the permit-to-fly. Each of the above steps, nonexhaustive in illustrating the difficulty of the addressed challenge, is structured in many other sub-segments, ranging from a suitable FHA analysis to a full re-design of the existing high lift systems or the adaptation of the architecture of the reference morphing trailing edge itself. This last item poses the classical challenge of the scaling issues, requiring the structural and the actuation subsystems to entirely fit into the new geometry. The objective of the present research is then to verify the feasibility of applying a certain architectural morphing philosophy onto a real aircraft, taking into account all the operational difficulties related to such an operation. This paper reports the activities related to the exploitation of the reference adaptive structural architecture, to the geometry of a flap of a small aircraft. In detail, the system layout is presented, followed by a FE analysis of the structural system under the operational loads and an estimation of the weight penalty associated to this transformation. Interfaces of the flap system with the main aircraft body are considered as constraints to the design development, so that the only flap is affected

    Preliminary design of an adaptive aileron for the next generation regional aircraft

    No full text
    Design of morphing wings at increasing TRL is common to several research programs worl- dwide. They are focused on the improvement of their performance that can be expressed in several ways, indeed: aerodynamic efficiency optimization, fuel consumption reduction, COx and NOx emission reduction and so on, or targeted to overcome the classical draw- backs related to the introduction of a novel technology such as system complexity increase and management of certification aspects. The Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ) lunched project MD0505 that can be inserted in this crow- ded frame. The target of this cooperation, involving Canadian and Italian academies and a research centre, is the development of a camber “morphing aileron” integrated on an in- novative full scale wing tip of the next generation regional aircraft. This paper focuses on the preliminary design and the numerical modeling of its architecture. The structural layout is, at the beginning, described in detail and furthermore, a finite element (FE) model of the entire aileron architecture is assessed and used to verify the structural integrity under prescribed operational conditions
    corecore