17 research outputs found

    Relevance of the purity level in a MetalOrganic Vapour Phase Epitaxy reactor environment for the growth of high quality pyramidal sitecontrolled Quantum Dots

    Full text link
    We report in this work on the spectral purity of pyramidal site-controlled InGaAs/AlGaAs Quantum Dots grown by metalorganic vapour phase epitaxy on(111)B oriented GaAs substrates. Extremely sharp emission peaks were found, showing linewidths surprisingly narrow (~27{\mu}eV) and comparable to those which can be obtained by Molecular Beam Epitaxy in an ultra-high vacuum environment. A careful reactor handling is regarded as a crucial step toward the fabrication of high optical quality systems.Comment: ICMOVPE 2010 Proceedin

    Morphological, compositional, and geometrical transients of V-groove quantum wires formed during metalorganic vapor-phase epitaxy

    Get PDF
    We present a theoretical model of the formation of self-limited (Al) GaAs quantum wires within V-grooves on GaAs(001) substrates during metalorganic vapor-phase epitaxy. We identify the facet-dependent rates of the kinetic processes responsible for the formation of the self-limiting profile, which is accompanied by Ga segregation along the axis perpendicular to the bottom of the original template, and analyze their interplay with the facet geometry in the transient regime. A reduced model is adopted for the evolution of the patterned profile, as determined by the angle between the different crystallographic planes as a function of the growth conditions. Our results provide a comprehensive phenomenological understanding of the self-ordering mechanism on patterned surfaces which can be harnessed for designing the quantum optical properties of low-dimensional systems. (C) 2013 AIP Publishing LLC

    Indium segregation during III-V quantum wire and quantum dot formation on patterned substrates

    Get PDF
    We report a model for metalorganic vapor-phase epitaxy on non-planar substrates, specifically V-grooves and pyramidal recesses, which we apply to the growth of InGaAs nanostructures. This model, based on a set of coupled reaction-diffusion equations, one for each facet in the system, accounts for the facet-dependence of all kinetic processes (e.g., precursor decomposition, adatom diffusion, and adatom lifetimes) and has been previously applied to account for the temperature, concentration, and temporal-dependence of AlGaAs nanostructures on GaAs (111)B surfaces with V-grooves and pyramidal recesses. In the present study, the growth of In0.12_{0.12}Ga0.88_{0.88}As quantum wires at the bottom of V-grooves is used to determine a set of optimized kinetic parameters. Based on these parameters, we have modeled the growth of In0.25_{0.25}Ga0.75_{0.75}As nanostructures formed in pyramidal site-controlled quantum-dot systems, successfully producing a qualitative explanation for the temperature-dependence of their optical properties, which have been reported in previous studies. Finally, we present scanning electron and cross-sectional atomic force microscopy images which show previously unreported facetting at the bottom of the pyramidal recesses that allow quantum dot formation.Comment: 9 pages, 8 figure

    Low-angle misorientation dependence of the optical properties of InGaAs/InAlAs quantum wells

    Full text link
    We investigate the dependence of the low-temperature photoluminescence linewidths from InP-lattice-matched InGaAs/InAlAs quantum wells on the low-angle misorientation from the (100) surface of the host InP substrate. Quantum wells were grown on InP substrates misorientated by 0, 0.2, 0.4 and 0.6 degrees; 0.4 degrees was found to consistently result in the narrowest peaks, with the optimal spectral purity of ~4.25 meV found from a 15nm quantum well. The width of the emission from the 15nm quantum well was used to optimize the growth parameters. Thick layers of Si-doped InGaAs were then grown and found to have bulk, low temperature (77 K), electron mobilities up to \mu ~ 3.5 x 10^4 cm2/Vs with an electron concentration of ~1 x 10^16

    Crystal defect topography of Stranski-Krastanow quantum dots by atomic force microscopy

    Get PDF
    We demonstrate a technique to monitor the defect density in capped quantum dot (QD) structures by performing an atomic force microscopy (AFM) of the final surface. Using this method we are able to correlate their density with the optical properties of the dot structures grown at different temperatures. Parallel transmission electron microscopy analysis shows that the AFM features are directly correlated with the density of stacking faults that originate from abnormally large dots. The technique is rapid and noninvasive making it an ideal diagnostic tool for optimizing the parameters of practical QD-based devices. (C) 2010 American Institute of Physics. (doi:10.1063/1.3514237

    A study of nitrogen incorporation in pyramidal site-controlled quantum dots

    Get PDF
    We present the results of a study of nitrogen incorporation in metalorganic-vapour-phase epitaxy-grown site-controlled quantum dots (QDs). We report for the first time on a significant incorporation (approximately 0.3%), producing a noteworthy red shift (at least 50 meV) in some of our samples. Depending on the level of nitrogen incorporation/exposure, strong modifications of the optical features are found (variable distribution of the emission homogeneity, fine-structure splitting, few-particle effects). We discuss our results, especially in relation to a specific reproducible sample which has noticeable features: the usual pattern of the excitonic transitions is altered and the fine-structure splitting is suppressed to vanishing values. Distinctively, nitrogen incorporation can be achieved without detriment to the optical quality, as confirmed by narrow linewidths and photon correlation spectroscopy

    Biexciton initialization by two-photon excitation in site-controlled quantum dots: the complexity of the antibinding state case

    Get PDF
    In this work, we present a biexciton state population in (111)B oriented site-controlled InGaAs quantum dots (QDs) by resonant two photon excitation. We show that the excited state recombines emitting highly pure single photon pairs entangled in polarization. The discussed cases herein are compelling due to the specific energetic structure of pyramidal InGaAs QDs—an antibinding biexciton—a state with a positive binding energy. We demonstrate that resonant two-photon excitation of QDs with antibinding biexcitons can lead to a complex excitation-recombination scenario. We systematically observed that the resonant biexciton state population is competing with an acoustic-phonon assisted population of an exciton state. These findings show that under typical two-photon resonant excitation conditions, deterministic biexciton state initialization can be compromised. This complication should be taken into account by the community members aiming to utilize similar epitaxial QDs with an antibinding biexciton
    corecore