167 research outputs found
Differential Calculi on Commutative Algebras
A differential calculus on an associative algebra A is an algebraic analogue
of the calculus of differential forms on a smooth manifold. It supplies A with
a structure on which dynamics and field theory can be formulated to some extent
in very much the same way we are used to from the geometrical arena underlying
classical physical theories and models. In previous work, certain differential
calculi on a commutative algebra exhibited relations with lattice structures,
stochastics, and parametrized quantum theories. This motivated the present
systematic investigation of differential calculi on commutative and associative
algebras. Various results about their structure are obtained. In particular, it
is shown that there is a correspondence between first order differential
calculi on such an algebra and commutative and associative products in the
space of 1-forms. An example of such a product is provided by the Ito calculus
of stochastic differentials.
For the case where the algebra A is freely generated by `coordinates' x^i,
i=1,...,n, we study calculi for which the differentials dx^i constitute a basis
of the space of 1-forms (as a left A-module). These may be regarded as
`deformations' of the ordinary differential calculus on R^n. For n < 4 a
classification of all (orbits under the general linear group of) such calculi
with `constant structure functions' is presented. We analyse whether these
calculi are reducible (i.e., a skew tensor product of lower-dimensional
calculi) or whether they are the extension (as defined in this article) of a
one dimension lower calculus. Furthermore, generalizations to arbitrary n are
obtained for all these calculi.Comment: 33 pages, LaTeX. Revision: A remark about a quasilattice and Penrose
tiling was incorrect in the first version of the paper (p. 14
Differential Geometry of Group Lattices
In a series of publications we developed "differential geometry" on discrete
sets based on concepts of noncommutative geometry. In particular, it turned out
that first order differential calculi (over the algebra of functions) on a
discrete set are in bijective correspondence with digraph structures where the
vertices are given by the elements of the set. A particular class of digraphs
are Cayley graphs, also known as group lattices. They are determined by a
discrete group G and a finite subset S. There is a distinguished subclass of
"bicovariant" Cayley graphs with the property that ad(S)S is contained in S.
We explore the properties of differential calculi which arise from Cayley
graphs via the above correspondence. The first order calculi extend to higher
orders and then allow to introduce further differential geometric structures.
Furthermore, we explore the properties of "discrete" vector fields which
describe deterministic flows on group lattices. A Lie derivative with respect
to a discrete vector field and an inner product with forms is defined. The
Lie-Cartan identity then holds on all forms for a certain subclass of discrete
vector fields.
We develop elements of gauge theory and construct an analogue of the lattice
gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear
connections are considered and a simple geometric interpretation of the torsion
is established.
By taking a quotient with respect to some subgroup of the discrete group,
generalized differential calculi associated with so-called Schreier diagrams
are obtained.Comment: 51 pages, 11 figure
Bicomplexes and Integrable Models
We associate bicomplexes with several integrable models in such a way that
conserved currents are obtained by a simple iterative construction. Gauge
transformations and dressings are discussed in this framework and several
examples are presented, including the nonlinear Schrodinger and sine-Gordon
equations, and some discrete models.Comment: 17 pages, LaTeX, uses amssymb.sty and diagrams.st
From Dumb Wireless Sensors to Smart Networks using Network Coding
The vision of wireless sensor networks is one of a smart collection of tiny,
dumb devices. These motes may be individually cheap, unintelligent, imprecise,
and unreliable. Yet they are able to derive strength from numbers, rendering
the whole to be strong, reliable and robust. Our approach is to adopt a
distributed and randomized mindset and rely on in network processing and
network coding. Our general abstraction is that nodes should act only locally
and independently, and the desired global behavior should arise as a collective
property of the network. We summarize our work and present how these ideas can
be applied for communication and storage in sensor networks.Comment: To be presented at the Inaugural Workshop of the Center for
Information Theory and Its Applications, University of California - San
Diego, La Jolla, CA, February 6 - 10, 200
On non commutative sinh-Gordon Equation
We give a noncommutative extension of sinh-Gordon equation. We generalize a
linear system and Lax representation of the sinh-Gordon equation in
noncommutative space. This generalization gives a noncommutative version of the
sinh-Gordon equation with extra constraints, which can be expressed as global
conserved currents.Comment: 7 Page
On the Delay of Network Coding over Line Networks
We analyze a simple network where a source and a receiver are connected by a
line of erasure channels of different reliabilities. Recent prior work has
shown that random linear network coding can achieve the min-cut capacity and
therefore the asymptotic rate is determined by the worst link of the line
network. In this paper we investigate the delay for transmitting a batch of
packets, which is a function of all the erasure probabilities and the number of
packets in the batch. We show a monotonicity result on the delay function and
derive simple expressions which characterize the expected delay behavior of
line networks. Further, we use a martingale bounded differences argument to
show that the actual delay is tightly concentrated around its expectation
Noncommutative Geometry of Finite Groups
A finite set can be supplied with a group structure which can then be used to
select (classes of) differential calculi on it via the notions of left-, right-
and bicovariance. A corresponding framework has been developed by Woronowicz,
more generally for Hopf algebras including quantum groups. A differential
calculus is regarded as the most basic structure needed for the introduction of
further geometric notions like linear connections and, moreover, for the
formulation of field theories and dynamics on finite sets. Associated with each
bicovariant first order differential calculus on a finite group is a braid
operator which plays an important role for the construction of distinguished
geometric structures. For a covariant calculus, there are notions of invariance
for linear connections and tensors. All these concepts are explored for finite
groups and illustrated with examples. Some results are formulated more
generally for arbitrary associative (Hopf) algebras. In particular, the problem
of extension of a connection on a bimodule (over an associative algebra) to
tensor products is investigated, leading to the class of `extensible
connections'. It is shown that invariance properties of an extensible
connection on a bimodule over a Hopf algebra are carried over to the extension.
Furthermore, an invariance property of a connection is also shared by a `dual
connection' which exists on the dual bimodule (as defined in this work).Comment: 34 pages, Late
Abelian Toda field theories on the noncommutative plane
Generalizations of GL(n) abelian Toda and abelian affine
Toda field theories to the noncommutative plane are constructed. Our proposal
relies on the noncommutative extension of a zero-curvature condition satisfied
by algebra-valued gauge potentials dependent on the fields. This condition can
be expressed as noncommutative Leznov-Saveliev equations which make possible to
define the noncommutative generalizations as systems of second order
differential equations, with an infinite chain of conserved currents. The
actions corresponding to these field theories are also provided. The special
cases of GL(2) Liouville and sinh/sine-Gordon are
explicitly studied. It is also shown that from the noncommutative
(anti-)self-dual Yang-Mills equations in four dimensions it is possible to
obtain by dimensional reduction the equations of motion of the two-dimensional
models constructed. This fact supports the validity of the noncommutative
version of the Ward conjecture. The relation of our proposal to previous
versions of some specific Toda field theories reported in the literature is
presented as well.Comment: v3 30 pages, changes in the text, new sections included and
references adde
Bi-differential calculi and integrable models
The existence of an infinite set of conserved currents in completely
integrable classical models, including chiral and Toda models as well as the KP
and self-dual Yang-Mills equations, is traced back to a simple construction of
an infinite chain of closed (respectively, covariantly constant) 1-forms in a
(gauged) bi-differential calculus. The latter consists of a differential
algebra on which two differential maps act. In a gauged bi-differential
calculus these maps are extended to flat covariant derivatives.Comment: 24 pages, 2 figures, uses amssymb.sty and diagrams.sty, substantial
extensions of examples (relative to first version
- …