28 research outputs found

    A new approach to deformation equations of noncommutative KP hierarchies

    Full text link
    Partly inspired by Sato's theory of the Kadomtsev-Petviashvili (KP) hierarchy, we start with a quite general hierarchy of linear ordinary differential equations in a space of matrices and derive from it a matrix Riccati hierarchy. The latter is then shown to exhibit an underlying 'weakly nonassociative' (WNA) algebra structure, from which we can conclude, refering to previous work, that any solution of the Riccati system also solves the potential KP hierarchy (in the corresponding matrix algebra). We then turn to the case where the components of the matrices are multiplied using a (generalized) star product. Associated with the deformation parameters, there are additional symmetries (flow equations) which enlarge the respective KP hierarchy. They have a compact formulation in terms of the WNA structure. We also present a formulation of the KP hierarchy equations themselves as deformation flow equations.Comment: 25 page

    Noncommutative Geometry of Finite Groups

    Full text link
    A finite set can be supplied with a group structure which can then be used to select (classes of) differential calculi on it via the notions of left-, right- and bicovariance. A corresponding framework has been developed by Woronowicz, more generally for Hopf algebras including quantum groups. A differential calculus is regarded as the most basic structure needed for the introduction of further geometric notions like linear connections and, moreover, for the formulation of field theories and dynamics on finite sets. Associated with each bicovariant first order differential calculus on a finite group is a braid operator which plays an important role for the construction of distinguished geometric structures. For a covariant calculus, there are notions of invariance for linear connections and tensors. All these concepts are explored for finite groups and illustrated with examples. Some results are formulated more generally for arbitrary associative (Hopf) algebras. In particular, the problem of extension of a connection on a bimodule (over an associative algebra) to tensor products is investigated, leading to the class of `extensible connections'. It is shown that invariance properties of an extensible connection on a bimodule over a Hopf algebra are carried over to the extension. Furthermore, an invariance property of a connection is also shared by a `dual connection' which exists on the dual bimodule (as defined in this work).Comment: 34 pages, Late

    Bicomplexes and Integrable Models

    Full text link
    We associate bicomplexes with several integrable models in such a way that conserved currents are obtained by a simple iterative construction. Gauge transformations and dressings are discussed in this framework and several examples are presented, including the nonlinear Schrodinger and sine-Gordon equations, and some discrete models.Comment: 17 pages, LaTeX, uses amssymb.sty and diagrams.st

    All bicovariant differential calculi on Glq(3,C) and SLq(3,C)

    Full text link
    All bicovariant first order differential calculi on the quantum group GLq(3,C) are determined. There are two distinct one-parameter families of calculi. In terms of a suitable basis of 1-forms the commutation relations can be expressed with the help of the R-matrix of GLq(3,C). Some calculi induce bicovariant differential calculi on SLq(3,C) and on real forms of GLq(3,C). For generic deformation parameter q there are six calculi on SLq(3,C), on SUq(3) there are only two. The classical limit q-->1 of bicovariant calculi on SLq(3,C) is not the ordinary calculus on SL(3,C). One obtains a deformation of it which involves the Cartan-Killing metric.Comment: 24 pages, LaTe

    Conserved Quantities in Noncommutative Principal Chiral Model with Wess-Zumino Term

    Full text link
    We construct noncommutative extension of U(N) principal chiral model with Wess-Zumino term and obtain an infinite set of local and non-local conserved quantities for the model using iterative procedure of Brezin {\it et.al} \cite{BIZZ}. We also present the equivalent description as Lax formalism of the model. We expand the fields perturbatively and derive zeroth- and first-order equations of motion, zero-curvature condition, iteration method, Lax formalism, local and non-local conserved quantities.Comment: 14 Page

    Automorphisms of associative algebras and noncommutative geometry

    Full text link
    A class of differential calculi is explored which is determined by a set of automorphisms of the underlying associative algebra. Several examples are presented. In particular, differential calculi on the quantum plane, the hh-deformed plane and the quantum group GLpq(2) are recovered in this way. Geometric structures like metrics and compatible linear connections are introduced.Comment: 28 pages, some references added, several amendments of minor importance, remark on modular group in section 8 omitted, to appear in J. Phys.

    Dynamical Evolution in Noncommutative Discrete Phase Space and the Derivation of Classical Kinetic Equations

    Full text link
    By considering a lattice model of extended phase space, and using techniques of noncommutative differential geometry, we are led to: (a) the conception of vector fields as generators of motion and transition probability distributions on the lattice; (b) the emergence of the time direction on the basis of the encoding of probabilities in the lattice structure; (c) the general prescription for the observables' evolution in analogy with classical dynamics. We show that, in the limit of a continuous description, these results lead to the time evolution of observables in terms of (the adjoint of) generalized Fokker-Planck equations having: (1) a diffusion coefficient given by the limit of the correlation matrix of the lattice coordinates with respect to the probability distribution associated with the generator of motion; (2) a drift term given by the microscopic average of the dynamical equations in the present context. These results are applied to 1D and 2D problems. Specifically, we derive: (I) The equations of diffusion, Smoluchowski and Fokker-Planck in velocity space, thus indicating the way random walk models are incorporated in the present context; (II) Kramers' equation, by further assuming that, motion is deterministic in coordinate spaceComment: LaTeX2e, 40 pages, 1 Postscript figure, uses package epsfi
    corecore