77 research outputs found

    Dose/Sensitivity in Proton Computer Tomography

    Get PDF
    N/

    Merging Orthovoltage X-Ray Minibeams spare the proximal tissues while producing a solid beam at the target

    Get PDF
    © 2019, The Author(s). Conventional radiation therapy of brain tumors often produces cognitive deficits, particularly in children. We investigated the potential efficacy of merging Orthovoltage X-ray Minibeams (OXM). It segments the beam into an array of parallel, thin (~0.3 mm), planar beams, called minibeams, which are known from synchrotron x-ray experiments to spare tissues. Furthermore, the slight divergence of the OXM array make the individual minibeams gradually broaden, thus merging with their neighbors at a given tissue depth to produce a solid beam. In this way the proximal tissues, including the cerebral cortex, can be spared. Here we present experimental results with radiochromic films to characterize the method’s dosimetry. Furthermore, we present our Monte Carlo simulation results for physical absorbed dose, and a first-order biologic model to predict tissue tolerance. In particular, a 220-kVp orthovoltage beam provides a 5-fold sharper lateral penumbra than a 6-MV x-ray beam. The method can be implemented in arc-scan, which may include volumetric-modulated arc therapy (VMAT). Finally, OXM’s low beam energy makes it ideal for tumor-dose enhancement with contrast agents such as iodine or gold nanoparticles, and its low cost, portability, and small room-shielding requirements make it ideal for use in the low-and-middle-income countries

    Development of High-Speed Fluorescent X-Ray Micro-Computed Tomography

    Get PDF
    A high-speed fluorescent x-ray CT (FXCT) system using monochromatic synchrotron x rays was developed to detect very low concentration of medium-Z elements for biomedical use. The system is equipped two types of high purity germanium detectors, and fast electronics and software. Preliminary images of a 10mm diameter plastic phantom containing channels field with iodine solutions of different concentrations showed a minimum detection level of 0.002 mg I/ml at an in-plane spatial resolution of 100µm. Furthermore, the acquisition time was reduced about 1/2 comparing to previous system. The results indicate that FXCT is a highly sensitive imaging modality capable of detecting very low concentration of iodine, and that the method has potential in biomedical applications

    Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization: from tissue morphology to individual cells

    Get PDF
    Current light microscopic methods such as serial sectioning, confocal microscopy or multiphoton microscopy are severely limited in their ability to analyse rather opaque biological structures in three dimensions, while electron optical methods offer either a good three-dimensional topographic visualization (scanning electron microscopy) or high-resolution imaging of very thin samples (transmission electron microscopy). However, sample preparation commonly results in a significant alteration and the destruction of the three-dimensional integrity of the specimen. Depending on the selected photon energy, the interaction between X-rays and biological matter provides semi-transparency of the specimen, allowing penetration of even large specimens. Based on the projection-slice theorem, angular projections can be used for tomographic imaging. This method is well developed in medical and materials science for structure sizes down to several micrometres and is considered as being non-destructive. Achieving a spatial and structural resolution that is sufficient for the imaging of cells inside biological tissues is difficult due to several experimental conditions. A major problem that cannot be resolved with conventional X-ray sources are the low differences in density and absorption contrast of cells and the surrounding tissue. Therefore, X-ray monochromatization coupled with a sufficiently high photon flux and coherent beam properties are key requirements and currently only possible with synchrotron-produced X-rays. In this study, we report on the three-dimensional morphological characterization of articular cartilage using synchrotron-generated X-rays demonstrating the spatial distribution of single cells inside the tissue and their quantification, while comparing our findings to conventional histological techniques
    corecore